NANOTEMP

Nanoscale Devices for Ultralow Temperature Thermometry

 Coordinatore LANCASTER UNIVERSITY 

 Organization address address: BAILRIGG
city: LANCASTER
postcode: LA1 4YW

contact info
Titolo: Mrs.
Nome: Diane
Cognome: Brackley
Email: send email
Telefono: +44 1524 592576
Fax: +44 1524 843087

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-08-01   -   2017-07-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    LANCASTER UNIVERSITY

 Organization address address: BAILRIGG
city: LANCASTER
postcode: LA1 4YW

contact info
Titolo: Mrs.
Nome: Diane
Cognome: Brackley
Email: send email
Telefono: +44 1524 592576
Fax: +44 1524 843087

UK (LANCASTER) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

physics    nuclear    developments    lower    dilution    he    demagnetisation    temperatures    thermal    commercial    millikelvin    refrigerator    mk    nanoscale    reached    materials    samples    regime    temperature    electrons    science   

 Obiettivo del progetto (Objective)

'Developments in low temperature technology heave reached the point where temperatures around 1 mK can be reached in commercially available systems, typically based on a 3He-4He dilution refrigerator. In the lab, nuclear demagnetisation refrigeration pushes this boundary lower: nuclear spin systems have been cooled to the nanokelvin regime, while the lowest temperature ever measured for electrons in a material is around 10 microkelvin. The availability of commercial millikelvin refrigerators has driven numerous discoveries in physics and materials science and continues to facilitate research on materials, fundamental physics, and quantum technologies. All of these fields would benefit from access to lower temperatures, but this transition is challenging and requires technological step-changes. This is partly because the commercial workhorse technology, the dilution refrigerator, is not a practical solution. (The record temperature for a dilution refrigerator is 1.75 mK and has been for over a decade.) More significant obstacles are the lack of reliable thermometry, particularly for electrons in nanoelectronic devices, and the challenge of making low temperature thermal contact between the system being studied and a nuclear demagnetisation refrigerator. This project will address several challenges to working below 1 mK, with the aim of opening the regime to studies of nanoelectronics, nanomechanics, and materials science. This will be achieved by developing two new thermometers: one for measuring the temperature of electrons in nanoscale samples, and one for improved measurements of the temperature of superfluid helium-3. We will also develop a platform to make thermal connection to nanoscale samples, with a particular focus on cooling incoming electrical connections. Through these developments, this project aims to move nanoscale science firmly into the sub-millikelvin regime, and to bring the benefits of nanotechnology to existing areas of low temperature physics.'

Altri progetti dello stesso programma (FP7-PEOPLE)

STEM CELL IMAGING (2011)

Molecular imaging of the myocardium to facilitate cardiac stem cell therapy

Read More  

MCI_AD PIB-PET_FMRI (2009)

Alterations in Memory Networks in Mild Cognitive Impairment and Alzheimer’s disease: Relating the Impact of Amyloid Burden with PIB-PET on Neuronal Activation as Assessed with fMRI

Read More  

ARTLHCFE (2010)

Accurate Real-time Tracking in LHC Full Events

Read More