ASSEMBLYNMR

3D structures of bacterial supramolecular assemblies by solid-state NMR

 Coordinatore FORSCHUNGSVERBUND BERLIN E.V. 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 1˙456˙000 €
 EC contributo 1˙456˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-StG
 Funding Scheme ERC-SG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-05-01   -   2019-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Mr.
Nome: Manfred
Cognome: Messerschmidt
Email: send email
Telefono: +49 551 201 1221
Fax: +49 551 201 1331

DE (MUENCHEN) beneficiary 0.00
2    FORSCHUNGSVERBUND BERLIN E.V.

 Organization address address: Rudower Chaussee 17
city: BERLIN
postcode: 12489

contact info
Titolo: Dr.
Nome: Adam
Cognome: Lange
Email: send email
Telefono: +49 30 94793 191
Fax: +49 30 94793 109

DE (BERLIN) hostInstitution 1˙456˙000.00
3    FORSCHUNGSVERBUND BERLIN E.V.

 Organization address address: Rudower Chaussee 17
city: BERLIN
postcode: 12489

contact info
Titolo: Dr.
Nome: Anne
Cognome: Höner
Email: send email
Telefono: +49 30 94793286
Fax: +49 30 94793109

DE (BERLIN) hostInstitution 1˙456˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

nmr    techniques    virulence    supramolecular    structure    bacterial    atomic    models    recently       structures    resolution    pili    assemblies    sss    microscopy    intact    electron    unknown    salmonella    ss    needles    ssnmr   

 Obiettivo del progetto (Objective)

'Supramolecular assemblies – formed by the self-assembly of hundreds of protein subunits – are part of bacterial nanomachines involved in key cellular processes. Important examples in pathogenic bacteria are pili and type 3 secretion systems (T3SS) that mediate adhesion to host cells and injection of virulence proteins. Structure determination at atomic resolution of such assemblies by standard techniques such as X-ray crystallography or solution NMR is severely limited: Intact T3SSs or pili cannot be crystallized and are also inherently insoluble. Cryo-electron microscopy techniques have recently made it possible to obtain low- and medium-resolution models, but atomic details have not been accessible at the resolution obtained in these studies, leading sometimes to inaccurate models.

I propose to use solid-state NMR (ssNMR) to fill this knowledge-gap. I could recently show that ssNMR on in vitro preparations of Salmonella T3SS needles constitutes a powerful approach to study the structure of this virulence factor. Our integrated approach also included results from electron microscopy and modeling as well as in vivo assays (Loquet et al., Nature 2012). This is the foundation of this application. I propose to extend ssNMR methodology to tackle the structures of even larger or more complex homo-oligomeric assemblies with up to 200 residues per monomeric subunit. We will apply such techniques to address the currently unknown 3D structures of type I pili and cytoskeletal bactofilin filaments. Furthermore, I want to develop strategies to directly study assemblies in a native-like setting. As a first application, I will study the 3D structure of T3SS needles when they are complemented with intact T3SSs purified from Salmonella or Shigella. The ultimate goal of this proposal is to establish ssNMR as a generally applicable method that allows solving the currently unknown structures of bacterial supramolecular assemblies at atomic resolution.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

MOLNANOMAS (2011)

Molecular Nanomagnets at Surfaces: Novel Phenomena for Spin-based Technologies

Read More  

SIMP (2008)

Ultra-high-Q Physics: Towards single molecules and phonons

Read More  

ACTAR TPC (2014)

Active Target and Time Projection Chamber

Read More