Coordinatore | UNIVERSITY OF SOUTHAMPTON
Organization address
address: Highfield contact info |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 100˙000 € |
EC contributo | 100˙000 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2013-CIG |
Funding Scheme | MC-CIG |
Anno di inizio | 2013 |
Periodo (anno-mese-giorno) | 2013-09-01 - 2017-08-31 |
# | ||||
---|---|---|---|---|
1 |
UNIVERSITY OF SOUTHAMPTON
Organization address
address: Highfield contact info |
UK (SOUTHAMPTON) | coordinator | 100˙000.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
I will systematically exploit the quantum properties in Group-IV Materials (GFMs) at the atomic scale, by using top-down patterning processes developed for Si technologies. Among GFMs, I will examine graphene, Si, and Ge nano-structures, since these materials are technologically important. More specifically, I will use our He-Ion-Microscope (HIM) milling techniques to fabricate nano-structures beyond the resolution limit of conventional lithography. This research will:
1. Characterize Freestanding Mono-layer or thin-layer of GFMs I will fabricate the freestanding device structure by HIM. The high-resolution of HIM will enable me to fabricate the graphene nano-ribbon as narrow as 5-nm. I will also examine the atomic structures of the device by Transmission-Electron-Microscope (TEM), and compare it with electrical measurements. The similar devices can be made for ultra-thin Si films. 2. In-situ formation and characterization of Si Quantum Dot (QD) I will characterize the Si Single-Electron-Transistor with a QD by in-situ monitoring in HIM. 3. Characterization of SiGe Fins I will characterize SiGe Fin for high performance electro-absorption optical modulator applications.
Impacts of the projects to EU are expected as following ways: 1. I will contribute in the interdisciplinary research areas with my strong research background in theoretical physics, nano-electronics, and Si Photonics. 2. The long-term research activities to QIP will be continued for secure communication and massive commutation, beyond the limit of the classical computations. 3. I will transfer my research experience from Japan. Especially, the industrial experience in Hitachi is helpful for running the clean room managements. 4. I will explore the innovative opportunities for sustainable electronics, in which EU communities play the important contributions towards the matured smart society. 5. I would like to establish the various collaboration within EU and internationally.