FLOWMAT

Exploiting Flow and Capillarity in Materials Assembly: Continuum Modelling and Simulation

 Coordinatore QUEEN MARY UNIVERSITY OF LONDON 

 Organization address address: 327 MILE END ROAD
city: LONDON
postcode: E1 4NS

contact info
Titolo: Mr.
Nome: Greg
Cognome: Dow
Email: send email
Telefono: +44 20 7882 2569
Fax: +44 20 78827276

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-09-01   -   2017-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    QUEEN MARY UNIVERSITY OF LONDON

 Organization address address: 327 MILE END ROAD
city: LONDON
postcode: E1 4NS

contact info
Titolo: Mr.
Nome: Greg
Cognome: Dow
Email: send email
Telefono: +44 20 7882 2569
Fax: +44 20 78827276

UK (LONDON) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

fundamental    capillary    phenomena    building    addition    colloids    materials    viscoplastic    fluid    fluids    particles    colloidal    flows    multiphase    hydrodynamic    experimentalists   

 Obiettivo del progetto (Objective)

'There is a growing interest in exploiting surface tension and hydrodynamic forces for materials assembly of colloids and complex fluids. For instance, the capillarity-driven motion of colloidal particles can be used to assemble them into two-dimensional ordered structures to coat surfaces. Non-Newtonian viscoplastic fluids can be precisely placed to form spanning 3D micro-architectures. The morphology of blends or alloys can be finely controlled through the addition of solid particles that adsorb at fluid interfaces. These applications can have an enormous impact in emerging technologies for which the ERA is world leader, such as plastic electronics, advanced materials manufacturing, and tissue engineering. These emerging applications call for radically new theoretical and numerical tools that take fluid mechanics into account. In this project, building on my previous research experiences in the continuum-level simulations of flows with suspended particles and interfacial phenomena, I propose simulation strategies for: i) multiphase fluid mixtures, whose phase distribution I propose to alter with the addition of field-responsive colloids; ii) viscoplastic drops, to be used as 'building blocks' in 3D printing applications; iii) and anisotropic elasto-capillary colloidal interactions. Owing to my previous research on multiphase flows and capillary phenomena, often done in concert with experimentalists, I am uniquely prepared to tackle these practically untapped areas of research. I will also employ CIG funds to buy equipment and initiate a parallel experimental activity in my group. The proposed research will provide a guideline on flow phenomena for which very little is known, substantially enriching the toolkit available to experimentalists and practitioners. From a fundamental perspective, my studies will spur fundamental questions on how we can use hydrodynamic, capillary, and elastic stresses to manipulate the dynamics and structure of soft matter systems.'

Altri progetti dello stesso programma (FP7-PEOPLE)

CHR_LNCRNA (2013)

Identification and functional characterization of lncRNA-chromatin protein complexes associated with specific chromatin modifications in breast cancer

Read More  

PVA DEVELOPMENT (2011)

"IDENTIFYING AND CHARACTERIZING REGULATORS OF PRIMORDIAL VASCULAR ADVENTITIA DEVELOPMENT, ORGANIZATION AND FUNCTION"

Read More  

FUNGEN (2009)

Heterologous expression of wood-rotting and litter-decomposing fungal genes involved in lignin degradation

Read More