CEMOS

Crystal Engineering for Molecular Organic Semiconductors

 Coordinatore ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 1˙477˙472 €
 EC contributo 1˙477˙472 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-StG
 Funding Scheme ERC-SG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-01-01   -   2018-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

 Organization address address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015

contact info
Titolo: Dr.
Nome: Caroline
Cognome: Vandevyver
Email: send email
Telefono: +41 21 693 35 73
Fax: +41 21 693 55 83

CH (LAUSANNE) hostInstitution 1˙477˙472.00
2    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

 Organization address address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015

contact info
Titolo: Prof.
Nome: Kevin
Cognome: Sivula
Email: send email
Telefono: +41 21 693 79 79

CH (LAUSANNE) hostInstitution 1˙477˙472.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

fabrication    mdash    materials    crystalline    crystal    performance    thin    molecular    organic    packing    semiconductors    ability    device    semiconductor    mos    solution    film    cemos   

 Obiettivo del progetto (Objective)

'The urgent need to develop inexpensive and ubiquitous solar energy conversion cannot be overstated. Solution processed organic semiconductors can enable this goal as they support drastically less expensive fabrication techniques compared to traditional semiconductors. Molecular organic semiconductors (MOSs) offer many advantages to their more-common pi-conjugated polymer counterparts, however a clear and fundamental challenge to enable the goal of high performance solution-processable molecular organic semiconductor devices is to develop the ability to control the crystal packing, crystalline domain size, and mixing ability (for multicomponent blends) in the thin-film device geometry. The CEMOS project will accomplish this by pioneering innovative methods of “bottom-up” crystal engineering for organic semiconductors. We will employ specifically tailored molecules designed to leverage both thermodynamic and kinetic aspects of molecular organic semiconductor systems to direct and control crystalline packing, promote crystallite nucleation, compatibilize disparate phases, and plasticize inelastic materials. We will demonstrate that our new classes of materials can enable the tuning of the charge carrier transport and morphology in MOS thin films, and we will evaluate their performance in actual thin-film transistor (TFT) and organic photovoltaic (OPV) devices. Our highly interdisciplinary approach, combining material synthesis and device fabrication/evaluation, will not only lead to improvements in the performance and stability of OPVs and TFTs but will also give deep insights into how the crystalline packing—independent from the molecular structure—affects the optoelectronic properties. The success of CEMOS will rapidly advance the performance of MOS devices by enabling reproducible and tuneable performance comparable to traditional semiconductors—but at radically lower processing costs.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

NONCODEVOL (2013)

"Evolutionary genomics of long, non-coding RNAs"

Read More  

SUSY (2010)

SUPERSYMMETRY: a window to non-perturbative physics

Read More  

ADAPT (2013)

Origins and factors governing adaptation: Insights from experimental evolution and population genomic data

Read More