STEMCARDIOVASC

Human Pluripotent Stem Cells: the new heart patient?

 Coordinatore ACADEMISCH ZIEKENHUIS LEIDEN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Netherlands [NL]
 Totale costo 2˙500˙000 €
 EC contributo 2˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-ADG_20120314
 Funding Scheme ERC-AG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-11-01   -   2018-10-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    ACADEMISCH ZIEKENHUIS LEIDEN

 Organization address address: Albinusdreef 2
city: LEIDEN
postcode: 2333 ZA

contact info
Titolo: Mrs.
Nome: Liesbeth
Cognome: Dorama
Email: send email
Telefono: +31 71 5269569
Fax: +31 71 5268275

NL (LEIDEN) hostInstitution 2˙500˙000.00
2    ACADEMISCH ZIEKENHUIS LEIDEN

 Organization address address: Albinusdreef 2
city: LEIDEN
postcode: 2333 ZA

contact info
Titolo: Prof.
Nome: Christine Lindsay
Cognome: Mummery
Email: send email
Telefono: +31 71 5269307
Fax: +31 71 5269307

NL (LEIDEN) hostInstitution 2˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

bioassays    group    heart    impact    human    tissue    decade    diseased    models    generate    cardiovascular    vascular    hpsc    stem    disease    cells    isogenic    hipsc    constructs   

 Obiettivo del progetto (Objective)

'The ability to generate pluripotent stem cells (iPSC) by reprogramming somatic tissues is arguably the greatest breakthrough in biomedical science of the last decade. The most inaccessible cells of the body can now be derived repeatedly from any individual. This could have a huge impact on understanding disease and the development of new therapeutic drugs but it will require a new level of sophistication in bioassays to create disease models and monitor disease phenotypes. The project I propose here will take up this challenge for the cardiovascular system, creating new human models of heart failure and vascular disease that presently do not exist. My group is uniquely positioned in Europe to realize these ambitions through more than a decade of research on cardiac and vascular cells from human embryonic stem cells and more recently hiPSC; its present location in Leiden University Medical Centre is optimal for fostering clinical links. My group is one of few worldwide that uses conventional homologous recombination in human PSCs. My aims here are (1) develop protocols for differentiating all cells of the heart (2) engineer synthetic and native human myocardium that models healthy tissue and common disease states and (3) generate sets of isogenic diseased hPSC to model pathogenesis. This will be realized by deriving lineage marked “rainbow coloured” reporter hPSC lines, introducing selected (immature) cardiovascular cells into engineered constructs and subjecting them to mechanical/biochemical stress factors like cyclic contraction and fluid flow that would normally induce maturation and disease. The constructs will support simultaneous measurement of functional tissue parameters and include hiPSC from relevant diseases, genetically or pharmacologically rescued and isogenic hESC with the corresponding gene mutations. These new “sick human heart” and “ diseased vessel” models and novel bioassays will significantly advance technology to have major impact on the field.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

MICRODE (2014)

Interpreting the irrecoverable microbiota in digestive ecosystems

Read More  

ARCHAELLUM (2013)

Assembly and function of the crenarchaeal flagellum

Read More  

LBCAD (2014)

Lower bounds for combinatorial algorithms and dynamic problems

Read More