HOLMES

The Electron Capture Decay of 163Ho to Measure the Electron Neutrino Mass with sub-eV sensitivity

 Coordinatore ISTITUTO NAZIONALE DI FISICA NUCLEARE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Italy [IT]
 Totale costo 3˙057˙067 €
 EC contributo 3˙057˙067 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-ADG
 Funding Scheme ERC-AG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-02-01   -   2019-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCA

 Organization address address: PIAZZA DELL'ATENEO NUOVO 1
city: MILANO
postcode: IT-20126

contact info
Nome: Mangano
Cognome: Anna
Email: send email
Telefono: 390264000000
Fax: 390264000000

IT (MILANO) beneficiary 1˙418˙600.50
2    ISTITUTO NAZIONALE DI FISICA NUCLEARE

 Organization address address: Via Enrico Fermi 40
city: FRASCATI
postcode: 44

contact info
Titolo: Dr.
Nome: Marilena
Cognome: Perrone
Email: send email
Telefono: +39 02 64482404
Fax: 390264000000

IT (FRASCATI) hostInstitution 1˙638˙466.50
3    ISTITUTO NAZIONALE DI FISICA NUCLEARE

 Organization address address: Via Enrico Fermi 40
city: FRASCATI
postcode: 44

contact info
Titolo: Prof.
Nome: Stefano
Cognome: Ragazzi
Email: send email
Telefono: 390264000000
Fax: 390264000000

IT (FRASCATI) hostInstitution 1˙638˙466.50

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

masses    excitation    beta    ho       calorimetric    atomic    de       energy    decay    mass    holmes    ev    neutrino    sensitivity    ec    electron    direct   

 Obiettivo del progetto (Objective)

'HOLMES is aimed at directly measuring the electron neutrino mass using the electron capture (EC) decay of 163Ho. The measurement of the absolute neutrino mass represents a major breakthrough in particle physics and cosmology. Due to their abundance as big-bang relics, massive neutrinos strongly affect the large-scale structure and dynamics of the universe. In addition, the knowledge of the scale of neutrino masses, together with their hierarchy pattern, is invaluable to clarify the origin of fermion masses beyond the Higgs mechanism. The innovative approach of HOLMES consists in the calorimetric measurement of the energy released in the decay of 163Ho. In this way, all the atomic de-excitation energy is measured, except that carried away by the neutrino. A finite neutrino mass m causes a deformation of the energy spectrum which is truncated at Q-m, where Q is the EC transition energy. The sensitivity depends on Q - the lower the Q, the higher the sensitivity - and 163Ho is an ideal isotope with a Q around 2.5keV. The direct measurement exploits only energy and momentum conservation, and it is therefore completely model-independent. At the same time, the calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in neutrino mass measurements with beta spectrometers, and minimizes the effect of the atomic de-excitation process uncertainties. HOLMES will deploy a large array of low temperature microcalorimeters with implanted 163Ho nuclei. The resulting mass sensitivity will be as low as 0.4eV. HOLMES will be an important step forward in the direct neutrino mass measurement with a calorimetric approach as an alternative to spectrometry. It will also establish the potential of this approach to extend the sensitivity down to 0.1eV. The detection techniques developed for HOLMES will have an impact in many frontier fields as astrophysics, material analysis, nuclear safety, archeometry, quantum communication.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

DU (2012)

Demographic Uncertainty

Read More  

3SPIN (2010)

Three Dimensional Spintronics

Read More  

I-CAD (2014)

"Innovative Catalyst Design for Large-Scale, Sustainable Processes"

Read More