MITOPEXLYSONETWORK

"Mitochondria, Peroxisomes and Lysosomes - the ""menage a trois"" of cellular metabolism"

 Coordinatore UNIVERSITAETSMEDIZIN GOETTINGEN - GEORG-AUGUST-UNIVERSITAET GOETTINGEN - STIFTUNG OEFFENTLICHEN RECHTS 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 1˙345˙200 €
 EC contributo 1˙345˙200 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-StG
 Funding Scheme ERC-SG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-02-01   -   2019-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITAETSMEDIZIN GOETTINGEN - GEORG-AUGUST-UNIVERSITAET GOETTINGEN - STIFTUNG OEFFENTLICHEN RECHTS

 Organization address address: Robert-Koch-Strasse 40
city: GOETTINGEN
postcode: 37075

contact info
Titolo: Dr.
Nome: Nuno Filipe
Cognome: Viegas Das Neves Raimundo
Email: send email
Telefono: 495514000000
Fax: 49551395979

DE (GOETTINGEN) hostInstitution 1˙345˙200.00
2    UNIVERSITAETSMEDIZIN GOETTINGEN - GEORG-AUGUST-UNIVERSITAET GOETTINGEN - STIFTUNG OEFFENTLICHEN RECHTS

 Organization address address: Robert-Koch-Strasse 40
city: GOETTINGEN
postcode: 37075

contact info
Titolo: Ms.
Nome: Christiane
Cognome: Hennecke
Email: send email
Telefono: 49551398770

DE (GOETTINGEN) hostInstitution 1˙345˙200.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

network    biology    dysfunction    mytopexlyso    lysosomal    cell    peroxisomes    mitochondria    metabolism    mitopexlyso    diseases    mitochondrial    metabolic    fundamental    lysosomes    pathways    capacity    mouse    signalling    roles    perturbations    hypothesis    model    elucidate    organelle    organelles   

 Obiettivo del progetto (Objective)

'The metabolic roles of mitochondria, peroxisomes and lysosomes are well established. Numerous genetic defects affecting the function of these organelles result in a wide spectrum of metabolic diseases. The involvement of these organelles in signalling pathways is receiving increasing attention. Furthermore, interactions between them and other cellular components have been elucidated. Evidence is now emerging that dysfunction in mitochondria, peroxisomes or lysosomes causes secondary perturbations in the other two organelles. The fundamental hypothesis presiding to this proposal is that mitochondria, peroxisomes and lysosomes form an interdependent network (MytoPexLyso), which is likely to have fundamental roles in cell biology, metabolism and metabolic diseases. To test this hypothesis and elucidate the role of the MitoPexLyso network in physiology and disease, we will employ state-of-the-art imaging and systems biology approaches. First, we will uncover how dysfunction of each MitoPexLyso organelle affects the network. We will test if mitochondrial dysfunction can trigger lysosome biogenesis, and also systematically address how perturbations in one organelle affect the other two. Second, we will identify signalling pathways sensing perturbations on the MytoPexLyso network, and elucidate their pathologic significance, both in cell lines and in animal models of metabolic diseases. Third, we will test a novel strategy to cure mitochondrial diseases: enhanced removal of damaged mitochondria through increased lysosomal autophagic capacity. We will generate a novel mouse model with higher lysosomal capacity in the skeletal muscle, and use a mouse model of mitochondrial myopathy, to test this premise in vivo. This proposal addresses key questions in cell biology and metabolism, and will lay the foundation for a new field of “organelle networks” which will profoundly impact our understanding of metabolism and metabolic diseases and drive future research endeavours.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

QUANTUMRELAX (2013)

Non Equilibrium Dynamics and Relaxation in Many Body Quantum Systems

Read More  

ANSR (2009)

Ab initio approach to nuclear structure and reactions (++)

Read More  

CATALYTICBIOSENSING (2012)

Signal Amplified Biosensing by Chemical Catalysis

Read More