DNA NANO-ROUTERS

Logical re-routing of cellular communication networks by DNA origami nanorobot

 Coordinatore BAR ILAN UNIVERSITY 

 Organization address address: BAR ILAN UNIVERSITY CAMPUS
city: RAMAT GAN
postcode: 52900

contact info
Titolo: Ms.
Nome: Estelle
Cognome: Waise
Email: send email
Telefono: +972 3 5317439
Fax: +972 3 6353277

 Nazionalità Coordinatore Israel [IL]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-12-01   -   2017-11-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    BAR ILAN UNIVERSITY

 Organization address address: BAR ILAN UNIVERSITY CAMPUS
city: RAMAT GAN
postcode: 52900

contact info
Titolo: Ms.
Nome: Estelle
Cognome: Waise
Email: send email
Telefono: +972 3 5317439
Fax: +972 3 6353277

IL (RAMAT GAN) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

networks    signals    cell    organism    traffic    cells    signal    diseases    programmed    routing    communication    nanorobots    biology    entire   

 Obiettivo del progetto (Objective)

'Almost every aspect of higher organism biology such as metabolism, growth and immunity, is regulated by intricate communication networks between multiple cell types. The ability to skew or interfere with these networks could lead to new ways to alleviate diseases caused or maintained by the interacting cells. However, since these cells are often dispersed across the entire organism, precise modulation of a single communication line is very challenging. In this project I propose to achieve this goal by DNA origami nanorobots programmed as routing devices for cell-cell communication. Each nanorobot is programmed to collect and sequester a specific type of signal molecule (cytokine, hormone etc.), and deliver it exclusively to a specific type of cell. Once programmed, a large group of nanorobots (~1016) effectively controls the traffic of signal molecules within an entire network, rendering it susceptible to arbitrary manipulations. These include re-routing signals to different cell addresses, up- or down-tuning the traffic volume in the path, or preventing a specific cell type from transmitting and receiving signals. This technology presents an advanced working draft towards automated biology as a strategy to solve challenges such as food, sustainable energy, emerging diseases etc.'

Altri progetti dello stesso programma (FP7-PEOPLE)

SELECTIONFORWELFARE (2011)

The potential of behavioral play markers to improve welfare in farm animals through selection

Read More  

FINDING OWN WORDS (2014)

"In the search of non-authoritative education in Hungary. Metadiscourses, identities and strategies in students’ and teachers’ interactive practices in standard and alternative settings"

Read More  

DKK3 T2DM (2010)

Wnt agonist Dickkopf 3 (DKK3) is a type 2 diabetes susceptibility gene

Read More