.BLASTED2

Identification of molecular targets for the treatment of the skeletal phenotype in Lysosomal Storage Disorders

 Coordinatore FONDAZIONE TELETHON 

 Organization address address: VIA VARESE 16/B
city: ROMA
postcode: 185

contact info
Titolo: Dr.
Nome: Irene
Cognome: Mearelli
Email: send email
Telefono: +39 06 44015308

 Nazionalità Coordinatore Italy [IT]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-01-01   -   2017-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    FONDAZIONE TELETHON

 Organization address address: VIA VARESE 16/B
city: ROMA
postcode: 185

contact info
Titolo: Dr.
Nome: Irene
Cognome: Mearelli
Email: send email
Telefono: +39 06 44015308

IT (ROMA) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

skeletal    cells    phenotype    lysosomal    genetic    lsds    disorders    skeletogenesis    abnormalities    dysfunction    clearance    function    signaling    lsd    accumulation    turn    regulates    underlying    pathways    mechanisms    storage    molecular    therapeutic   

 Obiettivo del progetto (Objective)

'Lysosomal storage disorders (LSDs) are inherited diseases characterized by progressive intracellular accumulation of undigested macromolecules due to lysosomal dysfunction. This results in a complex phenotype with broad pathological manifestations. Most LSDs are characterized by defective skeletogenesis. Despite this, the mechanisms by which lysosomal storage affects skeletal development and function is still unknown and the efficacy of current therapies on the skeletal system is limited. This project aims at identifying the molecular mechanisms that underlye the skeletal abnormalities in LSDs and to develop novel therapeutic strategies directed toward these defects. In recent years, the lysosome has emerged as a key signaling centre, which regulates and is in turn regulated by the activity of signaling molecules. By using the Mucopolysaccharidosis VII (MPSVII) and the Multiple Sulfatase Deficiency (MSD) mouse as models of LSD, we plan to characterize the consequences of lysosomal dysfunction on major signaling pathways involved in skeletogenesis, and to identify tools and pathways that prevent accumulation and/or promote clearance of storage in bone cells. Once identified, the molecular players in these signaling pathways are appealing therapeutic targets for the treatment of the skeletal phenotype in LSD. The enhancement of lysosomal function can promote “cellular clearance” in cells affected by lysosomal storage even without correcting the underlying genetic defect. Supported by strong preliminary data, we will use genetic and pharmacological manipulation of TFEB, the master transcription factor that regulates lysosomal biogenesis, as a tool to promote clearance and in turn rescue the skeletal abnormalities of LSDs. In summary, this project aims to identify the pathogenetic mechanisms underlying the skeletal manifestation of lysosomal storage disorders and to provide proof-of-principle that these skeletal features can be treated.'

Altri progetti dello stesso programma (FP7-PEOPLE)

SIRT1 AND DIABETES (2008)

IDENTIFICATION OF THE GENES REGULATED BY THE SIRT1 HISTONE DEACETYLASE AND THEIR CONTRIBUTION IN THE PATHOGENESIS OF TYPE 2 DIABETES AND OBESITY

Read More  

OLIGOMERS-POLYMERS (2010)

Dynamic covalent polymerisation of boron-aromatic oligomeric monomers

Read More  

NEMCODE (2013)

Controlled Assembly and Stabilisation of Functionalised Colloids in Nematic Liquid Crystals

Read More