Coordinatore | INSTITUT CURIE
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | France [FR] |
Totale costo | 2˙500˙000 € |
EC contributo | 2˙500˙000 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2013-ADG |
Funding Scheme | ERC-AG |
Anno di inizio | 2014 |
Periodo (anno-mese-giorno) | 2014-02-01 - 2019-01-31 |
# | ||||
---|---|---|---|---|
1 |
INSTITUT CURIE
Organization address
address: 26, rue d'Ulm contact info |
FR (PARIS) | hostInstitution | 2˙500˙000.00 |
2 |
INSTITUT CURIE
Organization address
address: 26, rue d'Ulm contact info |
FR (PARIS) | hostInstitution | 2˙500˙000.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Myosins are fascinating proteins with unique biochemical and physical properties. The multiple roles that they play in the dynamics of intracellular membranes are only beginning to emerge. Recent findings from the research team have highlighted unexpected roles in membrane deformation and in membrane fission played by two myosins (myosin 1b and myosin II) functioning at the interface between the Golgi, TGN (Trans-Golgi Network) and endosomes. Building on these results, we propose to establish a comprehensive model describing how several myosins work in concert with F-actin and with microtubule-based motors for sustaining transport events and membrane dynamics in a region of the cell at the crossroads of complex trafficking pathways. Towards this general objective, our main goals are: Goal 1: to understand the role of myosin 1b in membrane deformation Goal 2: to understand the role of nonmuscle myosin II in membrane fission Goal 3: to characterize the actin structures required for myosin functions Goal 4: to identify and to characterize other myosins functioning at the Golgi/TGN/endosome interface and to investigate their functional coordination Goal 5: to understand how myosins are functionally coordinated with microtubule-based motors. The function of myosins will be studied both at the cellular and physical level using two main original methodological approaches available to the research team: minimal in vitro assays (giant liposomes and membrane nanotubes) and normalized cell systems (micropatterns). This proposal represents a new development in the activity of the research team composed of cell biologists, experimental and theoretical physicists. Success of this proposal will rely on the strong experience of cross-disciplinary approaches that allowed the research team in the past to elucidate several physical mechanisms underlying transport processes and membrane dynamics.'
"Eclipsing binary stars as cutting edge laboratories for astrophysics of stellar structure, stellar evolution and planet formation"
Read More