Coordinatore | FACULDADE DE CIENCIAS E TECNOLOGIADA UNIVERSIDADE NOVA DE LISBOA
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Portugal [PT] |
Totale costo | 2˙250˙000 € |
EC contributo | 2˙250˙000 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2008-AdG |
Funding Scheme | ERC-AG |
Anno di inizio | 2009 |
Periodo (anno-mese-giorno) | 2009-01-01 - 2014-12-31 |
# | ||||
---|---|---|---|---|
1 |
FACULDADE DE CIENCIAS E TECNOLOGIADA UNIVERSIDADE NOVA DE LISBOA
Organization address
address: QUINTA DA TORRE contact info |
PT (CAPARICA) | hostInstitution | 2˙250˙000.00 |
2 |
FACULDADE DE CIENCIAS E TECNOLOGIADA UNIVERSIDADE NOVA DE LISBOA
Organization address
address: QUINTA DA TORRE contact info |
PT (CAPARICA) | hostInstitution | 2˙250˙000.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Imagine having a fully transparent and flexible, foldable, low cost, displays or at the glass window of your home/office, a transparent electronic circuit, do you believe on that? Maybe you are asking me if I am writing science fiction. No I am not. In fact this is a very ambitious objective but is tangible in the framework of this project due to the already acquired experience in the development of transparent thin film transistors using novel multifunctional and multicomponent oxides that can behave as active or passive semiconductor materials. This is an interdisciplinary research project aiming to develop a new class of transparent electronic components, based on multicomponent passive and active oxide semiconductors (n and p-types), to fabricate the novel generation of full transparent electronic devices and circuits, either using rigid or flexible substrates. The emphasis will be put on developing thin film transistors (n and p-TFTs) and integrated circuits for a broad range of applications (from inverters, C-MOS like devices, ring oscillators, CCDs backplanes for active matrices, biossensor arrays for DNA/RNA/proteins detection), boosting to its maximum their electronic performances for next generation of invisible circuits. By doing so, we are contributing for generating a free real state electronics that is able to add new electronic functionalities onto surfaces, which currently are not used in this manner and that silicon cannot contribute. The multicomponent metal oxide materials to be developed will exhibit (mainly) an amorphous or a nanocomposite structure and will be processed by PVD techniques like rf magnetron sputtering at room temperature, compatible with the use of low cost and flexible substrates (polymers, cellulose paper, among others). These will facilitate a migration away from tradition silicon like fab based batch processing to large area, roll to roll manufacturing technology which will offer significant advantages'