NEARFIELDATTO

Attosecond physics at nanoscale metal tips - strong field physics in the near-field optics regime

 Coordinatore FRIEDRICH-ALEXANDER-UNIVERSITAT ERLANGEN NURNBERG 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 2˙012˙733 €
 EC contributo 2˙012˙733 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-CoG
 Funding Scheme ERC-CG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-04-01   -   2019-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    FRIEDRICH-ALEXANDER-UNIVERSITAT ERLANGEN NURNBERG

 Organization address address: SCHLOSSPLATZ 4
city: ERLANGEN
postcode: 91054

contact info
Titolo: Ms.
Nome: Franziska
Cognome: Müller
Email: send email
Telefono: +49 9131 8526474
Fax: +49 9131 8526239

DE (ERLANGEN) hostInstitution 2˙012˙733.00
2    FRIEDRICH-ALEXANDER-UNIVERSITAT ERLANGEN NURNBERG

 Organization address address: SCHLOSSPLATZ 4
city: ERLANGEN
postcode: 91054

contact info
Titolo: Prof.
Nome: Jens Peter
Cognome: Hommelhoff
Email: send email
Telefono: +49 91318527090
Fax: +49 91318527889

DE (ERLANGEN) hostInstitution 2˙012˙733.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

inside    phenomena    nanoscale    electric    timescales    steer    tip    collective    currents    molecule    tips    electrons    laser    ultrafast    physics    gas    attosecond    nanometric    isolated    near    electron    nearfieldatto    optical    molecular    objects    dynamics    nano   

 Obiettivo del progetto (Objective)

'Electron dynamics in metals and nanostructures take place on attosecond timescales. Until today, these extremely fast processes are little understood let alone utilized. With NearFieldAtto, strong-field driven phenomena at nanoscale metal structures will be explored to elucidate collective electron dynamics and to induce optical-field-driven currents -- on attosecond timescales. We will investigate the near-field of a nanotip, resulting from the collective dynamics, both in amplitude and phase. Conversely, we will use the tip as a nanometric sensor to map out the electric field inside the focus of a pulsed laser beam and will directly measure the local phase. In two-tip and molecular junctions, we will explore the ultrafast steering of electronic currents by optical fields, both over a nanometric gap and inside a molecule, taking advantage of the large near-field enhancement the systems offer.

My group has recently shown that attosecond physics phenomena can be observed at solids, namely at nanoscale tips [Krüger et al., Nature 2011]. Hence, in NearFieldAtto we will employ techniques well known from attosecond physics with isolated objects, like gas-phase atoms and molecules, to steer laser-emitted electrons with the electric field of few-cycle laser pulses. We will use these electrons as nanometric probes to investigate optical properties of the solid state system and compare the results with those of isolated objects in gas-phase measurements. With two tips facing each other, we will realize a nanometric junction over which we will steer electrons with the optical field. A molecule placed between two tips will enable the investigation of a novel, ultrafast switching mechanism.

NearFieldAtto will bring attosecond physics a leap forward as compared to the state-of-the-art, will introduce strong-field physics into (quantum-)plasmonics, and will open the door towards lightwave or petahertz nano-electronics in metallic and molecular nano-systems.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

PARQUERY (2014)

Video-Based Smart Parking System

Read More  

CALDER (2014)

Cryogenic wide-Area Light Detectors 
with Excellent Resolution

Read More  

CUP (2013)

Circuit-level Photonic design

Read More