NANOSPIN

Nanoscale spin interactions and dynamics on superconducting surfaces

 Coordinatore FREIE UNIVERSITAET BERLIN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 1˙999˙468 €
 EC contributo 1˙999˙468 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-CoG
 Funding Scheme ERC-CG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-05-01   -   2019-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    FREIE UNIVERSITAET BERLIN

 Organization address address: Kaiserswertherstrasse 16-18
city: BERLIN
postcode: 14195

contact info
Titolo: Ms.
Nome: Tanja
Cognome: Binder
Email: send email
Telefono: +49 3083856751
Fax: +49 3083853448

DE (BERLIN) hostInstitution 1˙999˙468.80
2    FREIE UNIVERSITAET BERLIN

 Organization address address: Kaiserswertherstrasse 16-18
city: BERLIN
postcode: 14195

contact info
Titolo: Prof.
Nome: Katharina Jennifer
Cognome: Franke
Email: send email
Telefono: +49 83852805

DE (BERLIN) hostInstitution 1˙999˙468.80

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

magnetic    frequency    coherence    atomic    stm    crucial    energy    substrates    electron    microwave    machine    spins    coupling    probe    interactions    atoms    experiments    spin    single    resolving    measuring    quantum    coherent   

 Obiettivo del progetto (Objective)

'The latest concepts for quantum computing and data storage envision the use of single spins, which can be addressed and manipulated reliably. One of the main limitations towards this challenging goal is the ultra-short lifetime of excited spin states due to the interaction with the contacting leads. Another limitation is that coherence between individual spins is quickly lost. Already the measurement process for resolving coherent electron-spin interactions at the single atom level is highly challenging and has not been achieved so far. Within our proposal, we will construct a low-temperature scanning tunneling microscope with a radio-frequency current detection system and a microwave source close to the tip. With this unique machine, we will be able to carry out state-of-the-art STM experiments combined with atomic-scale precision of measuring electron-spin resonance signals. With the approach of measuring in the frequency domain, we increase our energy resolution beyond the thermal energy level broadening into the µeV range and can thus investigate magnetic coupling, hyperfine interactions and spin coherence properties, which are not accessible in conventional STM experiments. We will also be able to probe the timescales of spin-lattice and spin-spin relaxations by pump-probe excitation schemes. We will use this machine for resolving magnetic properties of single atoms and atomic-size nanostructures on superconducting substrates. These substrates exhibit two peculiarities, which are of crucial importance for quantum information processing. The spin lifetimes are orders of magnitudes larger than on normal metal surfaces. Furthermore, the long coherence length of Cooper pairs mediates coherent coupling of the spin states of paramagnetic atoms. We will manipulate the spin states by the intrinsic Josephson current as well as with external microwave radiation. Our model systems on superconductors will provide crucial steps towards quantum spin processing.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

CHROMOREPAIR (2008)

Genome Maintenance in the Context of Chromatin

Read More  

TEUS (2009)

"The Earth Under Surveillance. Climate Change, Geophysics and the Cold War Legacy."

Read More  

QUADYNEVOPRO (2012)

Quasistatic and Dynamic Evolution Problems in Plasticity and Fracture

Read More