Coordinatore | STICHTING CENTRUM VOOR WISKUNDE EN INFORMATICA
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Netherlands [NL] |
Totale costo | 1˙453˙700 € |
EC contributo | 1˙453˙700 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2013-CoG |
Funding Scheme | ERC-CG |
Anno di inizio | 2014 |
Periodo (anno-mese-giorno) | 2014-03-01 - 2019-02-28 |
# | ||||
---|---|---|---|---|
1 |
STICHTING CENTRUM VOOR WISKUNDE EN INFORMATICA
Organization address
address: Science Park 123 contact info |
NL (AMSTERDAM) | hostInstitution | 1˙453˙700.00 |
2 |
STICHTING CENTRUM VOOR WISKUNDE EN INFORMATICA
Organization address
address: Science Park 123 contact info |
NL (AMSTERDAM) | hostInstitution | 1˙453˙700.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Quantum computing combines computer science, physics and mathematics to fundamentally speed up computation using effects from quantum physics. Starting in the early 1980s with Feynman and Deutsch, and gaining momentum in the 1990s with the algorithms of Shor and Grover, this very interdisciplinary area has potentially far reaching consequences. While a large-scale quantum computer has not been built yet, experimenters are getting more optimistic: a recent prediction is that it will take another 10-15 years.
However, the tasks where such a quantum computer would be able to significantly outperform classical computers are still quite limited, which lends urgency to finding new applications. This proposal will find more such tasks, and produce new insights into the strengths and weaknesses of quantum computing. It is divided into three workpackages:
1. Algorithms & complexity. Find new quantum algorithms that are more efficient than the best classical algorithms, for example for matrix multiplication and graph problems. Extend our knowledge of the ultimate limitations of quantum algorithms, and possible parallelization (which has barely been studied so far).
2. Quantum communication. Communication complexity analyzes the amount of communication needed to solve distributed computational tasks, where separate parties each hold part of the input. Find new distributed problems where quantum communication outperforms classical communication, and explore links with fundamental physics issues like the role of entanglement and Bell-inequality violations.
3. Classical applications. Apply the newly developed mathematical tools of quantum computing to analyze problems in other areas, as we recently did for linear programs for the traveling salesman problem. This third workpackage will have impact regardless of progress in building a quantum computer.
The PI is one of the world’s top researchers in each of these three areas.'