NORACHEM

Novel radical chemistry for complex peptide synthesis and engineering

 Coordinatore INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 1˙984˙218 €
 EC contributo 1˙984˙218 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-CoG
 Funding Scheme ERC-CG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-04-01   -   2019-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE

 Organization address address: Rue De L'Universite 147
city: PARIS CEDEX 07
postcode: 75338

contact info
Titolo: Dr.
Nome: Olivier
Cognome: Berteau
Email: send email
Telefono: +33 01 34 65 23 08

FR (PARIS CEDEX 07) hostInstitution 1˙984˙218.00
2    INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE

 Organization address address: Rue De L'Universite 147
city: PARIS CEDEX 07
postcode: 75338

contact info
Titolo: Mrs.
Nome: Maryse
Cognome: Blin
Email: send email
Telefono: +33 1 34652054
Fax: +33 1 34652146

FR (PARIS CEDEX 07) hostInstitution 1˙984˙218.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

reactions    recently    chemistry    recent    radical    microorganisms    pathways    shown    natural    sam    catalyzing    enzymes    synthetic    biosynthetic   

 Obiettivo del progetto (Objective)

'Natural products are a constant source of inspiration in chemistry and have played a key role in the development of medicine. Recently, thanks to the progress in genomics and metagenomics, it has appeared that the biosynthetic potential of microorganisms and the complexity of the reactions catalyzed have been largely underestimated. Notably, enzymes using radical-based chemistry have been shown to be present in a very-large amount of biosynthetic pathways and to be widely distributed among all living organisms. The highly reactive radical species they generate give access to chemistries not accessible otherwise and allow them to catalyze unique and diverse reactions. Among them, the so-called 'radical SAM enzymes' have attracted considerable attention in recent years. While, initially hypothesized to be a family with several hundreds of members, recent genomic analyses have revealed that there are several tens of thousands of radical SAM enzymes catalyzing more than sixty distinct biochemical processes.

Very recently, an ever increasing number of radical SAM enzymes has been discovered in the biosynthetic pathways of natural compounds. In several cases, it has been shown that, instead of involving non-ribosomal or polyketide synthases, microorganisms use radical SAM enzymes to extensively modify ribosomally synthesized peptides producing highly complex bioactive molecules. In the present project, we propose to develop a multidisciplinary approach to investigate promising radical SAM enzymes catalyzing peptide modifications and elucidate their unique mechanisms which, in many cases, have no counterparts in biochemistry and synthetic chemistry. Based on the unique and highly conserved radical SAM domain and the mechanistic insights gained, we will develop novel radical SAM enzymes as catalysts for the synthesis of new chemicals with original structures and properties using a synthetic biology approach.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

FLEXBOT (2012)

Flexible object manipulation based on statistical learning and topological representations

Read More  

SWITCH2STICK (2014)

Engineering of biomimetic surfaces: Switchable micropatterns for controlled adhesion and touch

Read More  

CIF (2010)

Complex Interfacial Flows: From the Nano- to the Macro-Scale

Read More