LIGHT2NANOGENE

Cellular bioengineering by plasmonic enhanced laser nanosurgery

 Coordinatore THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS 

 Organization address address: NORTH STREET 66 COLLEGE GATE
city: ST ANDREWS FIFE
postcode: KY16 9AJ

contact info
Titolo: Ms.
Nome: Trish
Cognome: Starrs
Email: send email
Telefono: +44 1334 467286
Fax: +44 1334 462217

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 283˙489 €
 EC contributo 283˙489 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IOF
 Funding Scheme MC-IOF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-04-01   -   2017-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS

 Organization address address: NORTH STREET 66 COLLEGE GATE
city: ST ANDREWS FIFE
postcode: KY16 9AJ

contact info
Titolo: Ms.
Nome: Trish
Cognome: Starrs
Email: send email
Telefono: +44 1334 467286
Fax: +44 1334 462217

UK (ST ANDREWS FIFE) coordinator 283˙489.20

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

cellular    metastases    nanoscience    sirna    plasmonics    technique    perform    plasmonic    self    ultrafast    tool    cscs    nanosurgery    living    cells    technologies    surgery    laser    cancer    cell    transfection   

 Obiettivo del progetto (Objective)

'The use of nanoscience technologies to either perform therapy or diagnosis at the cellular level is expected to revolutionize 21st Century medicine by opening new approaches to cure various illnesses. However, cellular bioengineering is technologically challenging and becomes feasible only when different scientific disciplines are combined together to provide advanced cellular level surgery tools. To this aim, nanosurgery (i.e., surgery on the nanoscale) employs ultrafast laser technology and/or nanoscience emerging technologies (nanophotonics, nano-engineering, plasmonics etc.) to perform cell or even nucleus surgery. The major advantage of the nanosurgery approach is the prospect to disrupt submicrometer-sized organelles within living cells or tissue without affecting the surrounding material or compromising viability of the cell or organism. In this context, we intend to apply and optimize a novel femtosecond laser technique for nanosurgery of cancer cells. The technique, named plasmonic enhanced laser nanosurgery, combines the advantages of two rapidly expanding research and technological fields, namely plasmonics and ultrafast lasers, to build a versatile tool capable of performing high throughput cell nanosurgery. The main innovative goal of the proposal involves optical fiber integration of the plasmonic nanosurgery tool towards in-vivo (i.e. living subject) applications. In-vitro cell transfection (i.e., introduction of siRNA through the membrane of breast cancer stem cells (CSCs)) is the specific nanosurgery application of the Light2NanoGene project. The latter, is driven by the remarkable ability of these undifferentiated cells within a tumor to self-renew and promote metastases. The successful transfection of the CSCs with siRNA will silence the expression of key genes involved in their aggressive behavior. We expect proof-of-concept elimination of their capacity for self-regeneration and induction of metastases.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ENERGY (2012)

The Energy Story

Read More  

STU POSTERMAC (2014)

Studies of Polynuclear Clusters for Biomass Conversion

Read More  

MEYEREG (2009)

Mueller cells as regulators of retinal expansion and eye size

Read More