COSMOLOGICAL CANDLES

New Cosmological Standard Candles from Gamma Ray Burst Correlations

 Coordinatore ISTITUTO NAZIONALE DI ASTROFISICA 

 Organization address address: Viale del Parco Mellini 84
city: ROMA
postcode: 136

contact info
Titolo: Dr.
Nome: Giuseppe
Cognome: Malaguti
Email: send email
Telefono: +39 051 6398682
Fax: +39 051 6398724

 Nazionalità Coordinatore Italy [IT]
 Totale costo 272˙285 €
 EC contributo 272˙285 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IOF
 Funding Scheme MC-IOF
 Anno di inizio 2015
 Periodo (anno-mese-giorno) 2015-02-01   -   2018-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    ISTITUTO NAZIONALE DI ASTROFISICA

 Organization address address: Viale del Parco Mellini 84
city: ROMA
postcode: 136

contact info
Titolo: Dr.
Nome: Giuseppe
Cognome: Malaguti
Email: send email
Telefono: +39 051 6398682
Fax: +39 051 6398724

IT (ROMA) coordinator 272˙285.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

mechanism    lxtx    indicators    corrected    standard    subclass    luminosity    precise    free    correlation    candles    models    powerful    cosmological    bias    redshift    independent    objects    relations    ia    grbs    distance    sne    grb   

 Obiettivo del progetto (Objective)

'Gamma Ray Bursts (GRBs), the most powerful and distant objects ever observed so far, are fascinating objects due to their still unexplained relativistic outburst mechanism. GRBs are observed much further than SNe Ia, which are the most robust probes of the accelerating Universe and whose discovery was awarded the Nobel Prize in 2011. For this reason, GRBs can be used to test cosmological models. Discovering universal relations linking observable GRB properties is a basic step toward using them as precise distance indicators for cosmological applications. To this end, it is crucial to understand if they can be considered standard candles (astronomical objects whose luminosity is known or can be derived from other distance-independent observable) as SNe Ia and thus can be used as precise distance indicators for testing cosmological models. However, GRBs seem to be far from standard candles, with their energies spanning over eight orders of magnitude. Therefore, investigating relations between important GRB characteristics will shed light not only on their use as possible standard candles, but can also provide new constraints for the physical model of the GRB explosion mechanism. The project aim is to update in a multiwavelength range, from 0.3 keV to GeV, the luminosity-time correlation (LxTx) for GRBs (known in the literature as Dainotti relation) and identify a subclass of GRBs with well -defined properties and bias-free, namely corrected by redshift evolution and selection effects due to instrumental threshold through the Efron and Petrosian (1992) method. This subclass will be the candidate for GRBs standard candles. The bias-free LxTx correlation might be the basis for a new independent and powerful cosmological tool. Finally, the challenge is to use the LxTx correlation together with other correlations, both corrected for selection bias in order to discriminate among theoretical models, to use them as cosmological tools and valuable redshift estimators.'

Altri progetti dello stesso programma (FP7-PEOPLE)

DPHOTOD (2010)

Dendrimers for photonic devices

Read More  

IAM4MARS (2013)

Intelligent Automated Methods for Monitoring Agriculture with Remote Sensing

Read More  

CANCERTIME (2011)

The biological clock and cancer

Read More