CSKFINGERPRINTS

Mechanical loading to direct stem cell differentiation

 Coordinatore QUEEN MARY UNIVERSITY OF LONDON 

 Organization address address: 327 MILE END ROAD
city: LONDON
postcode: E1 4NS

contact info
Titolo: Mr.
Nome: Greg
Cognome: Dow
Email: send email
Telefono: +44020 7882 2569

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-05-01   -   2018-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    QUEEN MARY UNIVERSITY OF LONDON

 Organization address address: 327 MILE END ROAD
city: LONDON
postcode: E1 4NS

contact info
Titolo: Mr.
Nome: Greg
Cognome: Dow
Email: send email
Telefono: +44020 7882 2569

UK (LONDON) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

first    cells    single    stem    real    cytoskeletal    mechanical    track    time    cell    differentiation    induce   

 Obiettivo del progetto (Objective)

'The main goal of this proposal is to induce and detect in real time and at single-cell level the differentiation of human mesenchymal stem cells using mechanical loads in 2D and 3D conditions. This proposal integrates disciplines from nanotechnology, bioengineering and cell and molecular biology. First we propose to develop a method to track the differentiation of stem cells in real time and at the single cell level using cytoskeletal organization of actin, microtubules and intermediate filaments as a suitable cell biomarker. We will then establish mechanical loading protocols to induce, via direct force application onto cells, the first stages of stem cell differentiation towards specific cell lineages. We will apply cyclic tensile strain and compression to stem cells in 2D and 3D conditions, and track their differentiation status in real time using the cytoskeletal biomarkers that we will have identified before. The results of this proposal will have implications for the field of stem cell mechanobiology in particular, and some of the techniques developed will also contribute to the wider field of directed stem cell differentiation.'

Altri progetti dello stesso programma (FP7-PEOPLE)

EXTRADAY (2009)

An EXTRAordinary DAY with Very Normal People

Read More  

ADPROGRES (2008)

Alzheimer disease progression: Molecular studies of Abeta amyloid peptides aggregation and trafficking in neuronal cells

Read More  

DYCOCOS (2014)

Dynamics of Confined Complex Suspensions

Read More