CSKFINGERPRINTS

Mechanical loading to direct stem cell differentiation

 Coordinatore QUEEN MARY UNIVERSITY OF LONDON 

 Organization address address: 327 MILE END ROAD
city: LONDON
postcode: E1 4NS

contact info
Titolo: Mr.
Nome: Greg
Cognome: Dow
Email: send email
Telefono: +44020 7882 2569

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-05-01   -   2018-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    QUEEN MARY UNIVERSITY OF LONDON

 Organization address address: 327 MILE END ROAD
city: LONDON
postcode: E1 4NS

contact info
Titolo: Mr.
Nome: Greg
Cognome: Dow
Email: send email
Telefono: +44020 7882 2569

UK (LONDON) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

time    cell    induce    stem    first    mechanical    single    differentiation    cells    track    cytoskeletal    real   

 Obiettivo del progetto (Objective)

'The main goal of this proposal is to induce and detect in real time and at single-cell level the differentiation of human mesenchymal stem cells using mechanical loads in 2D and 3D conditions. This proposal integrates disciplines from nanotechnology, bioengineering and cell and molecular biology. First we propose to develop a method to track the differentiation of stem cells in real time and at the single cell level using cytoskeletal organization of actin, microtubules and intermediate filaments as a suitable cell biomarker. We will then establish mechanical loading protocols to induce, via direct force application onto cells, the first stages of stem cell differentiation towards specific cell lineages. We will apply cyclic tensile strain and compression to stem cells in 2D and 3D conditions, and track their differentiation status in real time using the cytoskeletal biomarkers that we will have identified before. The results of this proposal will have implications for the field of stem cell mechanobiology in particular, and some of the techniques developed will also contribute to the wider field of directed stem cell differentiation.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ROMURBITAL (2012)

The development of the urban settlement pattern in peninsular Italy resulting from the Roman conquest (338 to 150 BC)

Read More  

MLPM2012 (2013)

Machine Learning for Personalized Medicine

Read More  

SURROGARTS (2014)

Assisted reproduction beyond the nation state and nuclear family? Transition to parenthood and negotiating relatedness in gay father families created through transnational surrogacy

Read More