NEUROMT

Building the Neuronal Microtubule Cytoskeleton

 Coordinatore UNIVERSITEIT UTRECHT 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Netherlands [NL]
 Totale costo 2˙000˙000 €
 EC contributo 2˙000˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-CoG
 Funding Scheme ERC-CG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-11-01   -   2019-10-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITEIT UTRECHT

 Organization address address: Heidelberglaan 8
city: UTRECHT
postcode: 3584 CS

contact info
Titolo: Mrs.
Nome: Astrid
Cognome: Haijma
Email: send email
Telefono: +31 30 253 9227
Fax: +31 30 2531645

NL (UTRECHT) hostInstitution 2˙000˙000.00
2    UNIVERSITEIT UTRECHT

 Organization address address: Heidelberglaan 8
city: UTRECHT
postcode: 3584 CS

contact info
Titolo: Prof.
Nome: Casper Cassander
Cognome: Hoogenraad
Email: send email
Telefono: +31 302534585

NL (UTRECHT) hostInstitution 2˙000˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

mts    neuronal    transport    neurons    phases    synaptic    polarized    cytoskeleton    cell    mt    cargo    differentiation    determine    neurodegenerative    fundamental    polarity   

 Obiettivo del progetto (Objective)

'Microtubules (MTs) are one of the major cytoskeletal components of the cell, essential for many fundamental cellular and developmental processes, such as cell division, motility and polarity. In large and highly polarized cells like neurons, MTs have been regarded as essential structures for stable neuronal morphology and serve as tracks for long-distance transport; however, fundamental new insights into the role of neural MTs have emerged. New findings demonstrate that the MT cytoskeleton plays an active role during different phases of neuronal development: MTs determine axon formation, control polarized cargo trafficking, and regulate the dynamics of dendritic spines, the major sites of excitatory synaptic input. Failures in MT function have been linked to various neurological and neurodegenerative diseases and recent studies highlight MTs as a potential target for therapeutic intervention. How neuronal MTs are formed and stabilized during neuronal polarity and differentiation is largely unknown, and whether this requires the centrosome is under debate. The overall aim of this proposal is to investigate basic mechanisms responsible for organizing the microtubule cytoskeleton during neuronal development. Here, we will take a multidisciplinary approach and combine biochemistry, neurobiology, molecular engineering, and advanced microscopy to study the role of MTs at three stages of neuronal differentiation. We propose to determine: i) the role of (non-)centrosomal MT nucleation during early development, ii) the mechanism by which dendrites organize MTs into anti-parallel arrays, iii) the relation between MTs spine entry and cargo transport in mature neurons. We anticipate that these studies will uncover how the MT cytoskeleton is built and organized at different phases of neuronal development, which will be relevant for understanding polarized transport, synaptic processes and associated neurodegenerative disorders.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

IBIAS (2014)

Understanding contemporary interest group politics: mobilization and strategies in multi-layered systems

Read More  

DAL (2011)

DAL: Defying Amdahl's Law

Read More  

EARLYEARTH (2012)

Accretion and Differentiation of Terrestrial Planets

Read More