APPL

Anionic PhosPhoLipids in plant receptor kinase signaling

 Coordinatore CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 1˙797˙840 €
 EC contributo 1˙797˙840 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-StG
 Funding Scheme ERC-SG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-02-01   -   2019-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Dr.
Nome: Pascaline
Cognome: Toutois
Email: send email
Telefono: +33 472445641

FR (PARIS) hostInstitution 1˙797˙840.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Dr.
Nome: Yvon
Cognome: Jaillais
Email: send email
Telefono: +33 472728609

FR (PARIS) hostInstitution 1˙797˙840.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

vitro    phospholipids    plants    pips    analyze    membrane    lipid    interactions    signaling    family    protein    receptor    pm    plant    nanodomains    lipids    bki    suggest    anionic    kinases    function    electrostatic    bri   

 Obiettivo del progetto (Objective)

'In plants, receptor kinases form the largest family of plasma membrane (PM) receptors and they are involved in virtually all aspects of the plant life, including development, immunity and reproduction. In animals, key molecules that orchestrate the recruitment of signaling proteins to membranes are anionic phospholipids (e.g. phosphatidylinositol phosphate or PIPs). Besides, recent reports in animal and yeast cells suggest the existence of PM nanodomains that are independent of cholesterol and lipid phase and rely on anionic phospholipids as well as electrostatic protein/lipid interactions. Strikingly, we know very little on the role of anionic phospholipids in plant signaling. However, our preliminary data suggest that BKI1, an inhibitory protein of the steroid receptor kinase BRI1, interacts with various PIPs in vitro and is likely targeted to the PM by electrostatic interactions with these anionic lipids. These results open the possibility that BRI1, but also other receptor kinases, might be regulated by anionic phospholipids in plants. Here, we propose to analyze the function of anionic phospholipids in BRI1 signaling, using the root epidermis as a model system. First, we will ask what are the lipids that control membrane surface charge in this tissue and recruit BR-signaling component to the PM. Second, we will probe the presence of PIP-enriched nanodomains at the plant PM using super-resolution microscopy techniques and investigate the roles of these domains in BRI1 signaling. Finally, we will analyze the function of the BKI1-related plant-specific family of anionic phospholipid effectors in plant development. In summary, using a transversal approach ranging from in vitro studies to in vivo validation and whole organism physiology, this work will unravel the interplay between anionic phospholipids and receptor signaling in plants.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

CSV (2013)

"Conflict, Strategies, and Violence: An Actor-based Approach to Violent and Non-Violent Interactions"

Read More  

FLYVISUALCIRCUITS (2012)

Linking neural circuits to visual guidance in flying flies

Read More  

MATISSE (2013)

Middle Infrared Broadly Tunable Compact Cavity-Less Source based on Parametric Conversion

Read More