EMSWIM

Electromagnetic and spin wave interactions in magnetic nanostructure-based metamaterials and devices

 Coordinatore UNIVERZITA KARLOVA V PRAZE 

 Organization address address: Ovocny trh 5
city: PRAHA 1
postcode: 11636

contact info
Titolo: Dr.
Nome: Milena
Cognome: Stiborova
Email: send email
Telefono: +420 221 911 222
Fax: +420 221 911 277

 Nazionalità Coordinatore Czech Republic [CZ]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2007-4-3-IRG
 Funding Scheme MC-IRG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-04-01   -   2012-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERZITA KARLOVA V PRAZE

 Organization address address: Ovocny trh 5
city: PRAHA 1
postcode: 11636

contact info
Titolo: Dr.
Nome: Milena
Cognome: Stiborova
Email: send email
Telefono: +420 221 911 222
Fax: +420 221 911 277

CZ (PRAHA 1) coordinator 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

periodic    crystals    complementary    microcavities    scatterometric    company    germany    electromagnetic    commercial    waveguides    dainippon    magnetism    magneto    numerical    algorithm    republic    spin    create    scientists    software    magnetic    collaborating    metamaterials    science    artificial    materials    spectroscopy    prague    filters    wave    techniques    computer    surface    interactions    optical    czech    screen    nanostructures    graphical    japan    laboratories    proposing   

 Obiettivo del progetto (Objective)

'The proposal is focused on the fundamental and applied research of electromagnetic and spin wave processes in laterally patterned periodic nanostructures and derived metamaterials and devices, with particular interest in magnetic materials. The research aims at the development and computer implementation of a theoretical approach capable of modeling the electromagnetic response of the nanostructures, their numerical and experimental investigation, proposing and designing novel applications, and studying related physical phenomena such as photon-spin wave interactions. Graphical, user-friendly software based on the numerical algorithm will be utilized for a commercial scatterometric system in the frame of international collaboration with Dainippon Screen Mfg. Co. Ltd., Japan. The project will use magneto-optical spectroscopy available at the host institution and other optical, magneto-optical, and complementary magnetism- and surface-science techniques provided by collaborating laboratories in the Czech Republic, Germany, and Japan. The results obtained on the nanostructures will be used to propose and design novel artificial metamaterials (such as magneto-photonic crystals) and devices (such as waveguides, microcavities, polarizing, space-modulating and other optical filters).'

Introduzione (Teaser)

Researchers in the Czech Republic are aiming to develop and implement computer software capable of modelling the electromagnetic response of nanostructures.

Descrizione progetto (Article)

Scientists at Charles University in Prague will use EU funds to develop computer software to model the electromagnetic response of nanostructures. They aim to use the information gleaned about these structures to design novel artificial metamaterials such as magnetophotonic crystals, and other devices including waveguides and microcavities.

The 'Electromagnetic and spin wave interactions in magnetic nanostructure-based meta-materials and devices' (Emswim) research team explained how it will use 'graphical, user-friendly software based on the numerical algorithm' to create a 'commercial scatterometric system'. It hopes to achieve this aim by working in collaboration with the Japanese screen media technology company Dainippon Screen. The scientists in Prague will take advantage of the company's magneto-optical spectroscopy and other optical, magneto-optical, and complementary magnetism- and surface-science techniques provided by collaborating laboratories in the Czech Republic, Germany, and Japan to create the new software.

This collaboration is expected to develop a code that will be capable of proposing and analysing novel artificial metamaterials and devices based on periodic nanostructures. These should include better tuned moth-eye antireflective surfaces, wire-grid polarisers, grating phase plates, mode isolators, chromatic, spatial and other optical filters, waveguides, fibres, and microcavities.

Altri progetti dello stesso programma (FP7-PEOPLE)

NKG2D (2014)

CO-OPTION OF THE NKG2D LYMPHOCYTE RECEPTOR AS AN ONCOPROTEIN PROMOTING CANCER STEM CELL TRANSDIFFERENTIATION AND CANCER AUTONOMY

Read More  

MC IMPULSE (2009)

European Research Training in Monte Carlo based Innovative Management and Processing for an Unrivalled Leap in Sensor Exploitation

Read More  

HIQNANOBIO (2014)

Highly sensitive label-free detection using Nanopore and high-Q microcavities

Read More