PHOTOSYN-STM

Single-Molecule studies of photo-conductance on photosynthetic molecular systems by SPM break-junction measurements

 Coordinatore FUNDACIO INSTITUT DE BIOENGINYERIA DE CATALUNYA 

 Organization address address: CARRER BALDIRI REIXAC PLANTA 2A 10-12
city: BARCELONA
postcode: 8028

contact info
Titolo: Prof.
Nome: Fausto
Cognome: Sanz
Email: send email
Telefono: +34 9 34021240
Fax: +34 93 4021231

 Nazionalità Coordinatore Spain [ES]
 Totale costo 225˙715 €
 EC contributo 225˙715 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2007-4-1-IOF
 Funding Scheme MC-IOF
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-06-01   -   2011-05-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    FUNDACIO INSTITUT DE BIOENGINYERIA DE CATALUNYA

 Organization address address: CARRER BALDIRI REIXAC PLANTA 2A 10-12
city: BARCELONA
postcode: 8028

contact info
Titolo: Prof.
Nome: Fausto
Cognome: Sanz
Email: send email
Telefono: +34 9 34021240
Fax: +34 93 4021231

ES (BARCELONA) coordinator 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

electrical    dna    spm    scanning    probe    electron    fundamental    mechanism    interactions    molecular    conductance    molecule    chemical    last    single    photo   

 Obiettivo del progetto (Objective)

'This proposal presents a new fundamental approach to study one of the most outstanding processes in nature at the single-molecule level; the photo-induced charge separation process on molecular photosynthetic systems. The last technical advances, especially on Scanning Probe Microscopies (SPM), have allowed approaching a number of relevant molecular processes to a single-molecule level, fact that has brought a revolutionary view to the field of Molecular Biology and a more quantitative comprehension of fundamental bio-molecular processes. Indeed, examples of single-molecule experiments like folding/unfolding of proteins, DNA-enzymes interactions or molecular conductance measurements have become today a reality. In the last, electrical conductance measurements through a variety of simple molecular architectures have been already performed, and relevant fundamental roles such as the presence of different chemical entities; double bounds and/or chemical electron-acceptors/donors in the conduction mechanism, have been already understood. Being immersed in such an excitingmolecu scenario, we have now the opportunity to go one step further and tackle into the analysis of more complex molecular conductance processes at the single-molecule level. Conductance taking place between specific molecular centers at the primary electron transfer step in Photosynthesis is undoubtedly the most important molecular conductance mechanism in life. We have now all required elements at hand to put such a project in practice; technical instrumentation to measure single-molecule conductance under physiological conditions as well as synthetic routes to design the mimetic molecular connections among the photo-conducting pigment and the corresponding secondary electron-acceptor cofactor to approach the problem. Beyond the valuable scientific contribution, the results of this project will span to the desired implementation of such molecular systems on the current photo-electrical cell technology'

Introduzione (Teaser)

Recent advances in scanning probe microscopy (SPM) have enabled investigation of a number of processes at the single molecule level. In addition to biological importance such as understanding DNA-enzyme reactions, single molecule interactions are of interest for studying and developing new electrical behaviours at the single molecule level with potential relevance to the electronics industry.

Altri progetti dello stesso programma (FP7-PEOPLE)

NOVICOM (2009)

Automatic Analysis of Group Conversations via Visual Cues in Non-Verbal Communication

Read More  

ASCOTRANSSEQ (2012)

Identification of pathogenicity and virulence genes of the necrotrophic fungus Ascochyta spp. by genome-wide transcriptome analyses coupled to high-throughput next-generation sequencing

Read More  

COCALLMA (2008)

Cultural variety in the Christian Orient: Christian Arabic Language and Literature in the Middle Ages

Read More