IWASAWA

Iwasawa theory of p-adic Lie extensions

 Coordinatore RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 500˙000 €
 EC contributo 500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2007-StG
 Funding Scheme ERC-SG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-07-01   -   2013-06-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG

 Organization address address: SEMINARSTRASSE 2
city: HEIDELBERG
postcode: 69117

contact info
Titolo: Dr.
Nome: Norbert
Cognome: Huber
Email: send email
Telefono: +49 6221 542157
Fax: +49 6221 543599

DE (HEIDELBERG) hostInstitution 0.00
2    RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG

 Organization address address: SEMINARSTRASSE 2
city: HEIDELBERG
postcode: 69117

contact info
Titolo: Prof.
Nome: Otmar
Cognome: Venjakob
Email: send email
Telefono: -551869
Fax: +49-6221-54 5769

DE (HEIDELBERG) hostInstitution 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

functions    conjecture    families       commutative    hida       galois    theory    adic    iwasawa    epsilon   

 Obiettivo del progetto (Objective)

'One of the most challenging topics in modern number theory is the mysterious relation between special values of L-functions and Galois cohomology: they are the “shadows” in the two completely different worlds of complex and p-adic analysis of one and the same geometric object, viz the space of solutions for a given diophantine equation over the integral numbers, or more generally a motive M. The main idea of Iwasawa theory is to study manifestations of this principle such as the class number formula or the Birch and Swinnerton Dyer Conjecture simultaneously for whole p-adic families of such motives, which arise e.g. by considering towers of number fields or by (Hida) families of modular forms. The aim of this project is to supply further evidence for I. the existence of p-adic L-functions and for main conjectures in (non-commutative) Iwasawa theory, II. the (equivariant) epsilon-conjecture of Fukaya and Kato as well as III. the 2-variable main conjecture of Hida families. In particular, we hope to construct the first genuine “non-commutative” p-adic L-function as well as to find (non-commutative) examples fulfilling the expectation that the epsilon-constants, which are determined by the functional equations of the corresponding L-functions, build p-adic families themselves. In the third item a systematic study of Lie groups over pro-p-rings and Big Galois representations is planned with applications to the arithmetic of Hida families.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

ADHESWITCHES (2014)

Adhesion switches in cancer and development: from in vivo to synthetic biology

Read More  

INVPROBGEOMPDE (2012)

Inverse Problems in Partial Differential Equations and Geometry

Read More  

ISOINEQINTGEO (2012)

Isoperimetric Inequalities and Integral Geometry

Read More