EARTH CORE STRUCTURE

Thermal and compositional state of the Earth's inner core from seismic free oscillations

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 1˙202˙744 €
 EC contributo 1˙202˙744 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2007-StG
 Funding Scheme ERC-SG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-10-01   -   2014-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Dr.
Nome: Arwen Fedora
Cognome: Deuss
Email: send email
Telefono: +44 1223 337101
Fax: +44 1223 360779

UK (CAMBRIDGE) hostInstitution 0.00
2    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

UK (CAMBRIDGE) hostInstitution 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

seismic    geodynamo    fluid    thermal    data    earth    solidification    outer    planet    fundamental    normal    magnetic    core    theory    structures    period    inner    compositional    structure    global   

 Obiettivo del progetto (Objective)

The core, comprising the innermost parts of the Earth, is one of the most dynamic regions of our planet. The inner core is solid, surrounded by a liquid iron alloy. Inner core solidification combined with motions in the fluid outer core drive the geodynamo which generates Earth's magnetic field. Solidification of the inner core also supplies some of the heat that drives mantle convection and subsequently plate tectonics at the surface of the Earth. The thermal and compositional structure of the inner core is thus key to understanding the inner workings of our planet. No direct samples can be taken of the core and our knowledge of the thermal and compositional state of the Earth's outer and inner core relies on seismology. Ray theoretical studies using short period body waves are the most commonly used seismological data; these have led to observations of a large range of anomalous structures in the Earth's inner core, including anistropy, layers and hemispherical variations. However, due to uneven station and earthquake distribution, the robustness and global distribution of these features is still controversial. Long period seismic free oscillations, on the other hand, are able to provide global constraints, but lack of appropriate theory has prevented more complicated structures from being studied using normal modes. Thus, many fundamental questions regarding the thermal history of the core and geodynamo remain unanswered. Here, I propose to develop a comprehensive seismic inner core model, employing fully-coupled normal mode theory for the first time and using data from large earthquakes such as the Sumatra-Andaman event of 26 December 2006. This will dramatically change our current ideas of structure in the inner core. Using a novel combination of fluid dynamics and mineral physics I will interpret the thermal and compositional structure found at the centre of our planet, which in turn are fundamental to understand its geodynamo and magnetic field.

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

PETAL (2012)

Polarization condEnsation for Telecom AppLications

Read More  

BIOLEAP (2012)

Biotechnological optimization of light use efficiency in algae photobioreactors

Read More  

MIMESIS (2009)

Microscopic Modelling of Excitonic Solar Cell Interfaces

Read More