PIMCYV

Physiological Interactions between Marine Cyanobacteria and their Viruses

 Coordinatore TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Israel [IL]
 Totale costo 1˙582˙200 €
 EC contributo 1˙582˙200 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2007-StG
 Funding Scheme ERC-SG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-10-01   -   2013-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY

 Organization address address: TECHNION CITY - SENATE BUILDING
city: HAIFA
postcode: 32000

contact info
Titolo: Dr.
Nome: Debbie
Cognome: Lindell
Email: send email
Telefono: -5692
Fax: -5007

IL (HAIFA) hostInstitution 0.00
2    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY

 Organization address address: TECHNION CITY - SENATE BUILDING
city: HAIFA
postcode: 32000

contact info
Titolo: Mr.
Nome: Mark
Cognome: Davison
Email: send email
Telefono: -4715
Fax: -2813

IL (HAIFA) hostInstitution 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

hosts    diversity    phage    evolution    marine    genes    determine    defense    cyanobacteria    impact    physiological    mechanisms    microbial    fitness    infection    interactions    discovery    above    bacterial    influence    cyanobacterial    host    phages    metabolic   

 Obiettivo del progetto (Objective)

'Viruses (phages) influence many aspects of microbial processes including the population dynamics, diversity and evolution of their hosts. Yet we know practically nothing about the physiological interactions between hosts and phages during infection even though it is the outcome of these very interactions that affects the above-mentioned processes. Using marine cyanobacteria as a model system I propose to study the physiological interactions between ecologically important microbes and the phages that infect them to gain an understanding of the mechanisms through which they impact microbial ecology processes. Cyanobacteria are an important component of marine phytoplankton and contribute significantly to primary production in vast regions of the world’s oceans. The specific objectives of this proposed study are to: (1) Identify phage genes involved in taking over host metabolic processes; (2) Assess the fitness advantage to the phage provided by bacterial-like genes in phage genomes; (3) Develop a genetic manipulation system for cyanobacterial phages to determine the function of genes in (1) and (2); (4) Discover genes functioning in host defense mechanisms in diverse cyanobacterial-phage systems using whole-genome expression analysis and the generation of phage resistant strains; (5) Determine the impact of genes identified in (4) above on host fitness and phage development during infection. Discovery of the mechanisms employed by phage for taking over host metabolic processes and the defense mechanisms set into motion by the host to overcome phage infection will provide insight into how such interactions influence the diversity and evolution of both cyanobacteria and their phages. Furthermore, this study has high potential for uncovering new bacterial defense mechanisms as well as the discovery of novel viral mechanisms for shutting down bacterial metabolic processes, both of which may also have future practical applications.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

BOTMED (2011)

Microrobotics and Nanomedicine

Read More  

REVOLUTION (2009)

RNA silencing in regulation and evolution

Read More  

MODIFALS (2014)

From zebrafish to man Modifying amyotrophic lateral sclerosis (ALS): translation of biology into therapy

Read More