Coordinatore | CONSIGLIO NAZIONALE DELLE RICERCHE
Organization address
address: Piazzale Aldo Moro 7 contact info |
Nazionalità Coordinatore | Italy [IT] |
Totale costo | 3˙385˙388 € |
EC contributo | 3˙385˙388 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2007-1-1-ITN |
Funding Scheme | MC-ITN |
Anno di inizio | 2008 |
Periodo (anno-mese-giorno) | 2008-10-01 - 2012-09-30 |
# | ||||
---|---|---|---|---|
1 |
CONSIGLIO NAZIONALE DELLE RICERCHE
Organization address
address: Piazzale Aldo Moro 7 contact info |
IT (ROMA) | coordinator | 0.00 |
2 |
AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
Organization address
address: CALLE SERRANO 117 contact info |
ES (MADRID) | participant | 0.00 |
3 |
BASF NEDERLAND BV
Organization address
address: GRONINGENSINGEL 1 contact info |
NL (ARNHEM) | participant | 0.00 |
4 |
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
Organization address
address: Rue Michel -Ange 3 contact info |
FR (PARIS) | participant | 0.00 |
5 |
KATHOLIEKE UNIVERSITEIT LEUVEN
Organization address
address: Oude Markt 13 contact info |
BE (LEUVEN) | participant | 0.00 |
6 |
TECHNISCHE UNIVERSITEIT EINDHOVEN
Organization address
address: DEN DOLECH 2 contact info |
NL (EINDHOVEN) | participant | 0.00 |
7 |
THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Organization address
address: NORTH STREET 66 COLLEGE GATE contact info |
UK (ST ANDREWS FIFE) | participant | 0.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'This proposal is aimed at generating new fundamental knowledge and fostering new prospects and frontiers, training and transfer of knowledge in the field of highly efficient, highly selective, supported, recyclable catalysts. Target of the research programme are strongly innovative methodologies for the preparation, recovery and reuse of single-site, multipurpose, nanostructured catalytic materials, and the engineering of reactors based on these catalysts, as this represents an essential part towards the elaboration of sustainable production processes of high-added value fine chemicals. The approach pursued will be the immobilization of homogeneous catalysts, and particularly transition metal complexes, onto preformed (in)soluble supports (heterogenised catalysts). Materials defined at the nanometric level obtained by surface organometallic chemistry will be also included. The focus will be thereupon on their applications on specific, selected reactions. In this project, we plan to use advanced catalyst design to develop catalysts in which the support allows improvements in terms of activity, selectivity, catalyst lifetime and versatility, compared to their homogeneous counterparts. This will be an interdisciplinary, jointly executed research project encompassing complementary, synthetic (inorganic supports, ligands, organometallic compounds, functionalized polymers, dendrimers, nanoparticles), reactivity (homo- and heterogeneous catalyst screening and recycle, product analysis), characterization (advanced techniques for materials and in situ investigations), engineering (continuous-flow / supercritical flow reactors) and modelling activities.'
Chemical manufacturers rely heavily on catalysts to increase the purity and yield of their products. Scientists developed novel catalysts with enhanced efficiency and selectivity that have the added advantage of being recyclable.