Coordinatore |
Organization address
address: AVINGUDA CARL FRIEDRICH GAUSS 3 contact info |
Nazionalità Coordinatore | Non specificata |
Totale costo | 524˙760 € |
EC contributo | 524˙760 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2007-3-1-IAPP |
Anno di inizio | 2008 |
Periodo (anno-mese-giorno) | 2008-06-01 - 2012-05-31 |
# | ||||
---|---|---|---|---|
1 |
FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Organization address
address: AVINGUDA CARL FRIEDRICH GAUSS 3 contact info |
ES (Castelldefels) | coordinator | 0.00 |
2 |
IMAGINE OPTIC
Organization address
address: 18 RUE CHARLES DE GAULLE contact info |
FR (ORSAY) | participant | 0.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The development of high resolution, non damaging imaging techniques are crucial for understanding the biological processes occurring at the cellular level. Nonlinear microscopy (NLM) is rapidly establishing as a powerful technique for high resolution imaging of living biological samples. The high peak powers and low pulse energies available from ultrashort pulses, allow an efficient excitation of nonlinear effects with reduced collateral damage when interacting with cells. Ultrashort pulse light has three additional parameters that can be exploited for a more efficient light-cell interaction. i) Pulse shaping, acting on the temporal intensity profile and phase parameters of a pulse will allow for a more efficient and less damaging interaction with the sample. ii) Adaptive optics will be used to modulate the beam’s wavefront spatial distribution parameter. This will allow correcting aberrations for an increased transversal resolution, larger penetration depths and fields of view. As focus spot size is reduced, it will also allow for lower power to be used, preserving living specimens. In this project, we aim, for the first time, to join complementary intersectorial expertise to perform simultaneous pulse shaping and wavefront correction at the sample plane of a NLM. The knowledge of each of the teams will be transferred, based on microscopy applications. Firstly the work will be focused towards implementing adaptive optics to minimise aberrations induced by the setup and by the sample of study. Then pulse shaping will be use to enhance the output signal and reduce side effects (such as photobleaching). Finally, the combined action will result on new contrast generation technique, constituting an important breakthrough in NLM with great implications into bio-medicine.'
Imaging biological tissue in vivo is critical to our understanding of cellular processes and to advanced diagnostics. Novel microscopy technologies developed with EU support have advanced the state - of - the - art.