ESIS

Energy signaling in the stress response

 Coordinatore FUNDACAO CALOUSTE GULBENKIAN 

 Organization address address: AVENIDA DE BERNA 45A
city: LISBOA
postcode: 1000

contact info
Titolo: Prof.
Nome: Antonio
Cognome: Coutinho
Email: send email
Telefono: -214407550
Fax: -214410501

 Nazionalità Coordinatore Portugal [PT]
 Totale costo 75˙000 €
 EC contributo 75˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-IRG-2008
 Funding Scheme MC-IRG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-12-01   -   2011-11-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    FUNDACAO CALOUSTE GULBENKIAN

 Organization address address: AVENIDA DE BERNA 45A
city: LISBOA
postcode: 1000

contact info
Titolo: Prof.
Nome: Antonio
Cognome: Coutinho
Email: send email
Telefono: -214407550
Fax: -214410501

PT (LISBOA) coordinator 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

energy    despite    responses    cell    snf    protein    plants    snrk    kinase    stress    mode    pathway    mechanisms    signaling   

 Obiettivo del progetto (Objective)

'Plants are constantly confronted by multiple types of nutritional, abiotic and biotic stress. Often associated with stress is a reduction in photosynthesis and/or respiration, which in turn results in energy deprivation and ultimately in growth arrest. Despite their distinct origin and mode of perception, different stresses trigger similar downstream responses that include largely overlapping patterns of gene expression. Our work has shown that this general stress transcriptome is partly regulated by the evolutionarily conserved energy sensor protein kinases, SNF1 (sucrose non-fermenting1) in yeast, AMPK (AMP-activated protein kinase) in mammals and SnRK1 (Snf1-related kinase1) in plants. Upon sensing the energy deficit associated with stress, SnRK1 triggers extensive transcriptional changes that contribute to restoring metabolic and energy homeostasis, promoting cell survival and allowing the elaboration of longer-term responses for adaptation, growth and development. Despite the importance of the uncovered energy signaling pathway, virtually nothing is known regarding its mode of operation. Using a combination of cell-based assays, functional genomics, bioinformatics, mutant screens and genetics, this proposal seeks to gain insight on the regulatory mechanisms that govern SnRK1 action and to further dissect this signaling pathway through the identification of novel components. Elucidation of these mechanisms will contribute to understanding how stress resistance is established and how plant growth and development are finely orchestrated by the environment.'

Altri progetti dello stesso programma (FP7-PEOPLE)

AISENSE (2011)

Human-Computer Interaction and Computer Vision for Improving Healthy Living of Elderly through Exer-gaming

Read More  

MC-PAD (2008)

Marie Curie Training Network on Particle Detectors

Read More  

TOUCH IN SITU (2010)

Mechanotransduction in situ

Read More