ALBUGON

Genomics and effectoromics to understand defence suppression and disease resistance in Arabidopsis-Albugo candida interactions

 Coordinatore THE SAINSBURY LABORATORY 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 2˙498˙923 €
 EC contributo 2˙498˙923 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2008-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-01-01   -   2014-06-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE SAINSBURY LABORATORY

 Organization address address: "Norwich Research Park, Colney Lane"
city: NORWICH
postcode: NR47UH

contact info
Titolo: Ms.
Nome: Debbie
Cognome: Feather
Email: send email
Telefono: +44 1603 450420
Fax: +44 1603 450011

UK (NORWICH) hostInstitution 2˙498˙923.00
2    THE SAINSBURY LABORATORY

 Organization address address: "Norwich Research Park, Colney Lane"
city: NORWICH
postcode: NR47UH

contact info
Titolo: Prof.
Nome: Jonathan
Cognome: Jones
Email: send email
Telefono: +44 1603 450400
Fax: +44 1603 450011

UK (NORWICH) hostInstitution 2˙498˙923.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

effectors    genes    resistant    detect    pti    transcriptomics    cell    ac    effector    defence    arabidopsis    plants    plant    carry    triggered    suppress    recognition    pathogens    first    races    immunity    resistance    strains    pathogen    infect    host   

 Obiettivo del progetto (Objective)

'This project focuses on two questions about host/parasite interactions: how do biotrophic plant pathogens suppress host defence? and, what is the basis for pathogen specialization on specific host species? A broadly accepted model explains resistance and susceptibility to plant pathogens. First, pathogens make conserved molecules ( PAMPS ) such as flagellin, that plants detect via cell surface receptors, leading to PAMP-Triggered Immunity (PTI). Second, pathogens make effectors that suppress PTI. Third, plants carry 100s of Resistance (R) genes that detect an effector, and activate Effector-Triggered Immunity (ETI). One effector is sufficient to trigger resistance. Albugo candida (Ac) (white rust) strongly suppresses host defence; Ac-infected Arabidopsis are susceptible to pathogen races to which they are otherwise resistant. Ac is an oomycete, not a fungus. Arabidopsis is resistant to races of Ac that infect brassicas. The proposed project involves three programs. First ( genomics, transcriptomics and bioinformatics ), we will use next-generation sequencing (NGS) methods (Solexa and GS-Flex), and novel transcriptomics methods to define the genome sequence and effector set of three Ac strains, as well as carrying out >40- deep resequencing of 7 additional Ac strains. Second, ( effectoromics ), we will carry out functional assays using Effector Detector Vectors (Sohn Plant Cell 19:4077 [2007]), with the set of Ac effectors, screening for enhanced virulence, for suppression of defence, for effectors that are recognized by R genes in disease resistant Arabidopsis and for host effector targets. Third, ( resistance diversity ), we will characterize Arabidopsis germplasm for R genes to Ac, both for recognition of Arabidopsis strains of Ac, and for recognition in Arabidopsis of effectors from Ac strains that infect brassica. This proposal focuses on Ac, but will establish methods that could discover new R genes in non-hosts against many plant diseases.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

COXINEL (2014)

COherent Xray source INferred from Electrons accelerated by Laser

Read More  

THINK (2011)

The Immune function of NK cells

Read More  

ENSENA (2011)

Entanglement from Semiconductor Nanostructures

Read More