Coordinatore | UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II.
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Italy [IT] |
Totale costo | 600˙000 € |
EC contributo | 600˙000 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2008-AdG |
Funding Scheme | ERC-AG |
Anno di inizio | 2009 |
Periodo (anno-mese-giorno) | 2009-01-01 - 2013-12-31 |
# | ||||
---|---|---|---|---|
1 |
UNIVERSITA DEGLI STUDI DI FIRENZE
Organization address
address: Piazza San Marco 4 contact info |
IT (Florence) | beneficiary | 30˙000.00 |
2 |
UNIVERSITA DEGLI STUDI DI PAVIA
Organization address
address: STRADA NUOVA 65 contact info |
IT (PAVIA) | beneficiary | 30˙000.00 |
3 |
UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II.
Organization address
address: Corso Umberto I 40 contact info |
IT (NAPOLI) | hostInstitution | 540˙000.00 |
4 |
UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II.
Organization address
address: Corso Umberto I 40 contact info |
IT (NAPOLI) | hostInstitution | 540˙000.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Isoperimetric and Sobolev inequalities are the best known examples of geometric-functional inequalities. In recent years the PI and collaborators have obtained new and sharp quantitative versions of these and other important related inequalities. These results have been obtained by the combined use of classical symmetrization methods, new tools coming from mass transportation theory, deep geometric measure tools and ad hoc symmetrizations. The objective of this project is to further develop thes techniques in order to get: sharp quantitative versions of Faber-Krahn inequality, Gaussian isoperimetric inequality, Brunn-Minkowski inequality, Poincaré and Sobolev logarithm inequalities; sharp decay rates for the quantitative Sobolev inequalities and Polya-Szegö inequality.'