Coordinatore | UNIVERSITY OF BRISTOL
Organization address
address: TYNDALL AVENUE SENATE HOUSE contact info |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 45˙000 € |
EC contributo | 45˙000 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2007-2-2-ERG |
Funding Scheme | MC-ERG |
Anno di inizio | 2008 |
Periodo (anno-mese-giorno) | 2008-03-01 - 2011-02-28 |
# | ||||
---|---|---|---|---|
1 |
UNIVERSITY OF BRISTOL
Organization address
address: TYNDALL AVENUE SENATE HOUSE contact info |
UK (BRISTOL) | coordinator | 0.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The science of nanoscale structures and processes is currently an area of enormous activity, attracting great cross-disciplinary interest from researchers worldwide. This rapidly developing field requires novel tools and techniques for nanoscale analysis. The atomic force microscope (AFM) and scanning near-field optical microscope (SNOM), for example, have developed in response to this requirement. Recent work has demonstrated the potential of SNOM techniques to enable nanoscale infrared (IR) spectroscopy. Such a capability would be of immense value in understanding chemical processes at the nanoscale, such as those driving the self-assembly of materials or modifying protein conformation. Progress towards true nanoscale IR spectroscopy is, however, badly hampered by the lack of suitable widely-tuneable IR laser sources. The proposed reintegration grant will provide valuable supplementary support to five-year fellowship project, recently awarded to the researcher. This project addresses the development of suitable tuneable sources, based on nonlinear optical frequency conversion techniques, and their application to IR SNOM for the first time, thus enabling effective spectroscopic analysis of nanoscale objects. Collaborative studies of nanostructured materials and biomaterials will both validate the techniques developed and address important issues in the study of these systems. It is anticipated that the final outcome of this project will be a novel analytical tool of great value to nanoscale research in chemistry, physics and the materials and life sciences.'