CENDUP

Decoding the mechanisms of centrosome duplication

 Coordinatore ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 2˙004˙155 €
 EC contributo 2˙004˙155 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2008-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-04-01   -   2014-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

 Organization address address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015

contact info
Titolo: Ms.
Nome: Caroline
Cognome: Vandevyver
Email: send email
Telefono: +41 21 693 4977
Fax: +41 21 693 5585

CH (LAUSANNE) hostInstitution 2˙004˙155.00
2    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

 Organization address address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015

contact info
Titolo: Prof.
Nome: Pierre
Cognome: Gönczy
Email: send email
Telefono: -6925915
Fax: -6526913

CH (LAUSANNE) hostInstitution 2˙004˙155.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

samacs    assay    mechanisms    zyg    significant    screens    interactions    sas    maintenance    centriolar    cells    analyze    chemical    procentriole    proteins    human    single    centriole    cell    elegans   

 Obiettivo del progetto (Objective)

'Centrosome duplication entails the formation of a single procentriole next to each centriole once per cell cycle. The mechanisms governing procentriole formation are poorly understood and constitute a fundamental open question in cell biology. We will launch an innovative multidisciplinary research program to gain significant insight into these mechanisms using C. elegans and human cells. This research program is also expected to have a significant impact by contributing important novel assays to the field. Six specific aims will be pursued: 1) SAS-6 as a ZYG-1 substrate: mechanisms of procentriole formation in C. elegans. We will test in vivo the consequence of SAS-6 phosphorylation by ZYG-1. 2) Biochemical and structural analysis of SAS-6-containing macromolecular complexes (SAMACs). We will isolate and characterize SAMACs from C. elegans embryos and human cells, and analyze their structure using single-particle electron microscopy. 3) Novel cell-free assay for procentriole formation in human cells. We will develop such an assay and use it to test whether SAMACs can direct procentriole formation and whether candidate proteins are needed at centrioles or in the cytoplasm. 4) Mapping interactions between centriolar proteins in live human cells. We will use chemical methods developed by our collaborators to probe interactions between HsSAS-6 and centriolar proteins in a time- and space-resolved manner. 5) Functional genomic and chemical genetic screens in human cells. We will conduct high-throughput fluorescence-based screens in human cells to identify novel genes required for procentriole formation and small molecule inhibitors of this process. 6) Mechanisms underlying differential centriolar maintenance in the germline. In C. elegans, we will characterize how the sas-1 locus is required for centriole maintenance during spermatogenesis, as well as analyze centriole elimination during oogenesis and identify components needed for this process'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

ALEM (2014)

ADDITIONAL LOSSES IN ELECTRICAL MACHINES

Read More  

ABCTRANSPORT (2012)

Minimalist multipurpose ATP-binding cassette transporters

Read More  

LABCHIP_MULTIPLEX (2010)

Simultaneous Detection of Multiple DNA and Protein Targets on Paramagnetic Beads Packed in Microfluidic Channels using Quantum Dots as Tracers

Read More