MATLAN

High relative accuracy matrix techniques for linear and non-linear structured eigenvalue problems and applications

 Coordinatore TECHNISCHE UNIVERSITAT BERLIN 

 Organization address address: STRASSE DES 17 JUNI 135
city: BERLIN
postcode: 10623

contact info
Titolo: Dr.
Nome: Annette
Cognome: Schade
Email: send email
Telefono: +49 3 031421370
Fax: +49 3 031421121

 Nazionalità Coordinatore Germany [DE]
 Totale costo 111˙036 €
 EC contributo 111˙036 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2007-2-1-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-04-06   -   2010-04-05

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITAT BERLIN

 Organization address address: STRASSE DES 17 JUNI 135
city: BERLIN
postcode: 10623

contact info
Titolo: Dr.
Nome: Annette
Cognome: Schade
Email: send email
Telefono: +49 3 031421370
Fax: +49 3 031421121

DE (BERLIN) coordinator 111˙036.49

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

matrix    accuracy    eigenvalue    relative    structured    algorithms    hamiltonian    linear    singular   

 Obiettivo del progetto (Objective)

'Development of matrix algorithms for solving linear and non-linear structured eigenvalue problems with high relative accuracy or with the best accuracy possible. We will particularly focus on problems which reduce to eigenvalue problems for Hamiltonian and skew-Hamiltonian problems since those appear in important applications. We will combine standrad algorithms for such problems with known high relative acuracy methods for some other matrix problems in orther to develop high relative accuracy algorithms for some of the structured problems. We will also investigate newly propsed method for clustering almost stochastic matrices which is used for the identification of meta-stable states of Markov chains. In this case high relative accuracy requirement reduces to compuation of correct signs of the singular vectors of the second largest singular value, but as fast as possible.'

Altri progetti dello stesso programma (FP7-PEOPLE)

RIANS (2010)

Rydberg Interactions at Nanostructured Surfaces

Read More  

RHEA (2010)

RHeophysics and Energy of mAgmas

Read More  

AVICONGEN2 (2010)

Conservation genetics of threatened bird species

Read More