NEW POLARITY FACTORS

Discovering New Determinants of Epithelial Cell Polarity

 Coordinatore  

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Edna
Cognome: Murphy
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

 Nazionalità Coordinatore Non specificata
 Totale costo 0 €
 EC contributo 0 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-10-01   -   2011-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Edna
Cognome: Murphy
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

UK (CAMBRIDGE) coordinator 246˙983.34

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

screening    cell    recent    distinct    normal    pathway    additional    drosophila    epithelial    dystroglycan    signaling    tor    lkb    energy    cells    ampk    starvation    polarity   

 Obiettivo del progetto (Objective)

'Multicellularity requires the organization of cells into specialized tissues. Cells that make up epithelial tissue are polarized; distinct outer (apical) and inner (basal) faces are central to their purpose. Previous studies in animal and cell culture model systems have revealed a number of polarity determinants that act coordinately to establish and maintain epithelial cell polarity under normal conditions. Recent work in Drosophila melanogaster has demonstrated that under starvation conditions, normal polarity signaling is not sufficient; activation of a distinct low-energy polarity pathway is required to maintain polarity. This low-energy polarity pathway is mediated by the LKB1-AMPK signaling module, which acts as a sensor of energy availability. Additional components of the pathway include dystroglycan and the growth regulator TOR, which are not required for epithelial cell polarity except under starvation conditions. Intriguingly, LKB1, AMPK1, dystroglycan, and TOR are all associated with incidence or progression of human epithelial cancers. These findings reveal important, yet unexplored connections between cell polarity, energy-dependent signaling, and cancer. A critical step in the investigation of these links is the identification of additional factors mediating both the low- and normal energy polarity pathways. Large-scale reverse genetic screening in Drosophila provides a powerful, new, and comprehensive approach to this problem. Recent advances in RNAi technology enhance and streamline the screening process, allowing for multiple targeted questions to be addressed. Accordingly, the aims are as follows: Aim 1: Identify novel factors involved in regulating epithelial cell polarity under low-energy conditions. Aim 2: Identify factors required for polarity under normal but not low-energy conditions.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ARDIS (2011)

Academic Researchers Driving Innovation Systems

Read More  

FRINGEHE (2012)

Uncovering the Role of Notch Modifiers in the Generation of Hematopoietic Stem Cells in the Embryo

Read More  

NAVIGATING STIGMA (2012)

Navigating Stigma: People with Intellectual Disability Creating Inclusive Communities

Read More