Coordinatore | Karlsruher Institut fuer Technologie
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Germany [DE] |
Totale costo | 1˙513˙000 € |
EC contributo | 1˙513˙000 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2009-StG |
Funding Scheme | ERC-SG |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-01-01 - 2015-12-31 |
# | ||||
---|---|---|---|---|
1 |
Karlsruher Institut fuer Technologie
Organization address
address: Kaiserstrasse 12 contact info |
DE (Karlsruhe) | hostInstitution | 1˙513˙000.00 |
2 |
Karlsruher Institut fuer Technologie
Organization address
address: Kaiserstrasse 12 contact info |
DE (Karlsruhe) | hostInstitution | 1˙513˙000.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The key aim of the project is to correlate the electronic transport properties of nanoscale metallic contacts with their structure. The electronic transport properties through a metallic contact of atomic dimensions are governed by the atomic structure and by the chemical properties of the contact as well as by the wave nature of electrons. This leads to plateaus of the conductance measured as a function of contact size that do not necessarily correspond to integer multiples of the conductance quantum. I will investigate whether and how atomic as well as electronic shell effects influence the atomic structure of nanoscale metallic contacts. We will measure both electronic transport properties and structural properties concurrently and determine their mutual relation on each individual contact. The contacts will be fabricated by Joule heating a nanowire until thermally assisted electromigration sets in and thins the nanowire to form a contact. The structural properties of these nanocontacts will be studied using scanning force microscopy and scanning tunneling microscopy with atomic resolution in ultrahigh-vacuum. This approach will allow us to use clean superconducting contacts and to exploit superconductivity in order to study the electronic transport properties of the contacts. The electronic transport properties will be studied employing multiple Andreev reflections to determine the number and transmission coefficient of electronic conduction channels. Eventually, a deeper understanding of the relation between structure and electronic transport properties will be obtained which is a prerequisite to tailor the electronic transport properties of nanoscale metallic contacts.'