SMYD3 AND MYOGENESIS

Potential role of the histonemethylase SMYD3 in myogenesis

 Coordinatore UNIVERSITA DEGLI STUDI DI MILANO 

 Organization address address: Via Festa Del Perdono 7
city: MILANO
postcode: 20122

contact info
Titolo: Prof.
Nome: Roberto
Cognome: Mantovani
Email: send email
Telefono: 39-02-50315005
Fax: -50315085

 Nazionalità Coordinatore Italy [IT]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2007-4-3-IRG
 Funding Scheme MC-IRG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-09-03   -   2012-09-02

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITA DEGLI STUDI DI MILANO

 Organization address address: Via Festa Del Perdono 7
city: MILANO
postcode: 20122

contact info
Titolo: Prof.
Nome: Roberto
Cognome: Mantovani
Email: send email
Telefono: 39-02-50315005
Fax: -50315085

IT (MILANO) coordinator 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

regulation    chromatin    genes    transcriptional    determine    cells    histone    smyd    immunoprecipitation    muscle    mechanisms    myogenesis   

 Obiettivo del progetto (Objective)

'SMYD3 is a histone methylase that di- and tri-methylates histone H3 at lysine 4. In normal conditions SMYD3 is highly expressed only in skeletal muscle and testis. We hypothesize that SMYD3 plays an important role in transcriptional regulation throughout myogenesis. We will use C2C12 myoblast and primary satellite cells as model systems to assess the contribution of SMYD3 to the transcriptional regulation of muscle specific genes. We will over-express and knock down SMYD3 to determine the impact of SMYD3 on the expression of myogenic markers and the ability of C2C12 cells to fuse into multinucleated myotubes. We will also determine functional mechanisms that account for a potential involvement of SMYD3 in myogenesis by employing chromatin immunoprecipitation experiments. Moreover, we will identify SMYD3 target genes in muscle cells by RNA microarray analysis and by the combination of the chromatin immunoprecipitation technique with massively sequencing technology (ChIp-seq). A further objective of the project will be to gain insights into the mechanisms underlying SMYD3 activity and its modulation, by exploiting in vitro and in vivo approaches.'

Altri progetti dello stesso programma (FP7-PEOPLE)

POLYBRUSH (2013)

Dynamics in polymer brush-nanoparticle systems

Read More  

ACTIVIN AND CANCER (2009)

Roles and mechanisms of action of activin in skin cancer

Read More  

LGMD2A (2010)

Development of a strategy to treat limb-girdle muscular dystrophy (LGMD2A) using combined cell and gene therapy strategies

Read More