ALIGN

Ab-initio computational modelling of photovoltaic interfaces

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 1˙000˙000 €
 EC contributo 1˙000˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2009-StG
 Funding Scheme ERC-SG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-03-01   -   2016-02-29

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Dr.
Nome: Feliciano
Cognome: Giustino
Email: send email
Telefono: +44 1865 612790
Fax: +44 1865 273789

UK (OXFORD) hostInstitution 1˙000˙000.00
2    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Ms.
Nome: Gill
Cognome: Wells
Email: send email
Telefono: +44 1865 289800
Fax: +44 1865 289801

UK (OXFORD) hostInstitution 1˙000˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

voltage    materials    optimize    cells    electron    photo    generation    mechanical    energy    quantum    photovoltaic    atomic    sunlight    alignment    computational    solar    predict    area   

 Obiettivo del progetto (Objective)

'The aim of the ALIGN project is to understand, predict, and optimize the photovoltaic energy conversion in third-generation solar cells, starting from an atomic-scale quantum-mechanical modelling of the photovoltaic interface. The quest for photovoltaic materials suitable for low-cost synthesis, large-area production, and functional architecture has driven substantial research efforts towards third-generation photovoltaic devices such as plastic solar cells, organic-inorganic cells, and photo-electrochemical cells. The physical and chemical processes involved in the harvesting of sunlight, the transport of electrical charge, and the build-up of the photo-voltage in these devices are fundamentally different from those encountered in traditional semiconductor heterojunction solar cells. A detailed atomic-scale quantum-mechanical description of such processes will lay down the basis for a rational approach to the modelling, optimization, and design of new photovoltaic materials. The short name of the proposal hints at one of the key materials parameters in the area of photovoltaic interfaces: the alignment of the quantum energy levels between the light-absorbing material and the electron acceptor. The level alignment drives the separation of the electron-hole pairs formed upon absorption of sunlight, and determines the open circuit voltage of the solar cell. The energy level alignment not only represents a key parameter for the design of photovoltaic devices, but also constitutes one of the grand challenges of modern computational materials science. Within this project we will develop and apply new ground-breaking computational methods to understand, predict, and optimize the energy level alignment and other design parameters of third-generation photovoltaic devices.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

SENSORINEURAL (2008)

Elaboration and refinement of sensorineural dendritic architecture

Read More  

BIOSYNCEN (2013)

Dissection of centromeric chromatin and components: A biosynthetic approach

Read More  

HANDY-Q (2010)

Quantum Degeneracy at Hand

Read More