SQMS

Synthetic Quantum Many-Body Systems

 Coordinatore EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZURICH 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 2˙000˙000 €
 EC contributo 2˙000˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2009-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-03-01   -   2015-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZURICH

 Organization address address: Raemistrasse 101
city: ZUERICH
postcode: 8092

contact info
Titolo: Prof.
Nome: Tilman
Cognome: Esslinger
Email: send email
Telefono: +41 44 633 23 40

CH (ZUERICH) hostInstitution 2˙000˙000.00
2    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZURICH

 Organization address address: Raemistrasse 101
city: ZUERICH
postcode: 8092

contact info
Titolo: Prof.
Nome: Tilman Holger
Cognome: Esslinger
Email: send email
Telefono: +41-44-633 2340
Fax: +41-44-633 1254

CH (ZUERICH) hostInstitution 2˙000˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

fermi    atoms    gas    gases    quantum    physics    light    cavity    blockade    explore    questions    optical    fundamental    correlated    interaction    us    inside    body   

 Obiettivo del progetto (Objective)

'This proposal shows a new path to explore frontiers in quantum many-body physics using degenerate atomic gases. We will address fundamental open questions, create novel quantum-many body systems and seek applications beyond the realm of quantum gases. A two-component Fermi gas in an optical lattice is a unique realisation of the Fermi-Hubbard model and it is intimately linked to elementary concepts and open questions in many-body physics. We will develop novel tools for continuous cooling and detection of fermionic atoms in optical lattices. This will enable us to enter the anti-ferromagnetic phase and to study fundamental questions concerning the interplay between localization, coherence and spin-ordering in quantum many-body systems. An intriguing direction towards the creation of novel quantum many-body systems is the coupling of a strongly correlated quantum gas to an optical cavity. Here the cavity creates an effective long-range interaction with global character. This will bring together the physics of strongly-correlated systems and non-linear phenomena using a microscopically accessible system. In this highly explorative field we envisage, as a first experiment, a study of cavity-driven self-organization which may allow us to identify a novel form of a supersolid phase. Rather than investigating or manipulating the quantum gas using light we will also invert this approach and study the light after the interaction with a quantum gas inside a cavity. Using cavity opto-mechanical effects and a van der-Waals blockade by Rydberg atoms excited inside the cavity we will explore squeezing of the light and a novel photon blockade.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

SURFCOMP (2012)

Comparing and Analyzing Collections of Surfaces

Read More  

STOCHCELLFATE (2013)

Quantitative network-level analysis of stochastic cell fate decisions

Read More  

ECOFLAM (2013)

The Impact of Plant Evolution on Fire Behaviour in Ancient Ecosystems

Read More