NMNAG

New Methods in Non Archimedean Geometry

 Coordinatore UNIVERSITE PIERRE ET MARIE CURIE - PARIS 6 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 1˙541˙800 €
 EC contributo 1˙541˙800 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2009-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-03-01   -   2015-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITE PIERRE ET MARIE CURIE - PARIS 6

 Organization address address: Place Jussieu 4
city: PARIS
postcode: 75252

contact info
Titolo: Ms.
Nome: Annabelle
Cognome: Ostyn
Email: send email
Telefono: +33 1 44 27 26 78
Fax: +33 1 44 27 74 67

FR (PARIS) hostInstitution 1˙541˙800.00
2    UNIVERSITE PIERRE ET MARIE CURIE - PARIS 6

 Organization address address: Place Jussieu 4
city: PARIS
postcode: 75252

contact info
Titolo: Prof.
Nome: Francois
Cognome: Loeser
Email: send email
Telefono: -44322017
Fax: -44322048

FR (PARIS) hostInstitution 1˙541˙800.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

geometry    integration    stable    valued    spaces    archimedean    algebraic    nature    tools    model    theory    berkovich    motivic   

 Obiettivo del progetto (Objective)

'During the last decade, spectacular achievments have been completed in Algebraic and Arithmetic Geometry and in Representation Theory by using powerful new tools provided by Motivic Integration and Berkovich spaces. We propose to develop a general framework for geometry over non archimedean valued field that will provide common foundations for Motivic Integration and Berkovich spaces. This will allow to broaden the range of potential applications. A main originality of our approach is the use of advanced tools from modern Model Theory, like definability and stable domination, together with methods from Algebraic Geometry. The relevance of Model Theory to non archimedean geometry may be illustrated as follows: geometry over valued fields ultimately combine geometry over the residue field and geometry over the value group. Model theorically these geometries correspond respectively to stable and o-minimal theories. These are of a very different nature and Model Theory provides unifying concepts allowing to treat them on equal footing. This approach will in particular allow us to solve several fundamental open questions on the tame nature of the topology of Berkovich spaces and should open new perspectives towards outstanding conjectures like the Monodromy conjecture. Our goal is also to use model theoretic tools in order to give new applications of Motivic Integration to Algebraic Geometry and Singularity Theory.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

GEODYCON (2012)

Geometry and dynamics via contact topology

Read More  

SUPRAIMAGINGMACHINES (2011)

"Ditopic Imaging Agents, Interlocked Sensors and Machines"

Read More  

BPT (2011)

BEYOND PLATE TECTONICS

Read More