DURABLERESISTANCE

Durable resistance against fungal plant pathogens

 Coordinatore UNIVERSITAET ZUERICH 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 2˙100˙000 €
 EC contributo 2˙100˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2009-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-04-01   -   2015-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITAET ZUERICH

 Organization address address: Raemistrasse 71
city: ZURICH
postcode: 8006

contact info
Titolo: Prof.
Nome: Beat
Cognome: Keller
Email: send email
Telefono: +41 44 632 53 50
Fax: +41 44 632 53 51

CH (ZURICH) hostInstitution 2˙100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

protein    plant    plants    pathogens    lr    genes    occurring    adapt    function    durability    basis    durable    molecular    wheat    resistance    pathogen    gene    diversity    genetic    naturally    biochemical    mildew   

 Obiettivo del progetto (Objective)

'Plants and their pathogens are in a constant process of co-evolution. Consequently, many of the known defense genes of plants against fungal pathogens are rapidly loosing effectiveness under agricultural conditions. However, there are examples for durable resistance. It is one of the main research questions in plant biology to determine the genetic basis of such naturally occurring resistance and to understand the underlying biochemical and molecular cause for durability. This durability is characterized by the apparent inability of the pathogen to adapt to the resistance mechanism. The molecular understanding of durable resistance will contribute to future attempts to develop such resistance by design. We want to use two approaches towards understanding and developing durable resistance: the first one is based on the naturally occurring durable resistance gene Lr34 against rust and mildew diseases in wheat. This gene was recently isolated in our group and it encodes a putative ABC type of transporter protein, providing a possible link between non-host and durable resistance. Its function in resistance will be studied by genetic and biochemical approaches in the crop plant wheat, as there is no Lr34-type of resistance characterized in any other plant. However, there is a close Lr34-homolog in rice and its function will be investigated in this diploid system. The second approach will be based on natural diversity found in a specific resistance gene, conferring strong, but not durable resistance. This diversity will be used for a designed improvement of durability by developing new proteins or protein combinations to which the pathogen can not adapt. We will use the 15 naturally occurring alleles of the Pm3 powdery mildew resistance genes to identify the structural basis of specific interactions. Based on this characterization, we will develop intragenic or gene combination pyramiding strategies to obtain more broad-spectrum and more durable resistance.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

NANO-ARCH (2009)

Assembly of Colloidal Nanocrystals into Unconventional Types of Nanocomposite Architectures with Advanced Properties

Read More  

RNAIEPIMOD (2009)

RNA and Epigenetics: RNAi-Driven Chromatin Modifications

Read More  

ECOF (2013)

Electroactive Donor-Acceptor Covalent Organic Frameworks

Read More