Coordinatore | LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Germany [DE] |
Totale costo | 2˙155˙697 € |
EC contributo | 2˙155˙697 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2009-AdG |
Funding Scheme | ERC-AG |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-05-01 - 2015-04-30 |
# | ||||
---|---|---|---|---|
1 |
LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Organization address
address: GESCHWISTER SCHOLL PLATZ 1 contact info |
DE (MUENCHEN) | hostInstitution | 2˙155˙697.00 |
2 |
LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Organization address
address: GESCHWISTER SCHOLL PLATZ 1 contact info |
DE (MUENCHEN) | hostInstitution | 2˙155˙697.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Asthma and allergies are chronic conditions affecting billions of Europeans. These complex diseases are determined by interplay of genetic and environmental factors. Treatments can control symptoms, but cannot cure or prevent the diseases. I, and my team, have shown that children are strongly protected from asthma and allergies when growing up in a farming environment rich in microbial exposures: the prevalence of asthma and hay fever is reduced over 5 fold. We have shown that environmental exposure to microbial compounds is inversely related to asthma and allergies. We have isolated microbes from animal sheds which protect mice from allergic airway inflammation. My team is now at a critical point to move this work forward to the next step, which is to systematically identify the microbes and their immuno-stimulatory compounds that protect from asthma and allergies. We have key resources in hand. In previous population based studies large numbers of environmental samples from farm and non farm children with and without asthma and allergies have been stored in biobanks. Genome wide genotyping data have also been gathered. The HERA project aims at applying the latest innovative high throughput sequencing techniques to comprehensively characterize the microbial ecology of these environmental samples. New methods for assessing microbial immuno-stimulatory substances will be used. These innovations will allow the HERA team to identify distinct asthma and allergy protective microbial exposures taking each individual s genetic susceptibility into account. Once protective microbial exposures have been identified, the responsible substances can be isolated. These substances can be developed into novel and effective prevention strategies to combat the asthma and allergy epidemic.'