QNAO

Quantum Nano Optomechanics

 Coordinatore CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Dr.
Nome: Jean-Xavier
Cognome: Boucherle
Email: send email
Telefono: -76887895
Fax: -76881145

 Nazionalità Coordinatore France [FR]
 Totale costo 45˙000 €
 EC contributo 45˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2009-RG
 Funding Scheme MC-ERG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-04-01   -   2013-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Dr.
Nome: Jean-Xavier
Cognome: Boucherle
Email: send email
Telefono: -76887895
Fax: -76881145

FR (PARIS) coordinator 45˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

emitters    studying    single    coupling    mechanical    resonators    first    start    physics    eacute    light    quantum    ultrasensitive    hybrid    optical    signatures    emitter    nano   

 Obiettivo del progetto (Objective)

'The applicant has been recruited as a Chargé de Recherche for CNRS and will start soon at the Institut Néel (Grenoble, France) his own research activities. The Marie Curie Reintegration Grant will help him start his independent research career and support his installation at the Institute. The goal of the project is to extend the thematic of cavity optomechanics down to the nanoscale and observe the quantum first signatures with hybrid systems constituted of nanomechanical oscillators and single emitters. From their higher mechanical susceptibility, nano-resonators can facilitate the access to the quantum regime of radiation pressure and allow observing the week coupling to a single emitter. Those systems are also interesting candidates for opening links towards solid state physics at the condition to be able to detect and control their Brownian motion. The project will consist in developing an ultrasensitive nearfield sensor of the nanomotion. To do so the nano-mechanical oscillator will be approached in the evanescent tail of a high-Q optical microcavity, rendering its optical resonances sensitive to its position fluctuation. This approach allows to overpass the diffraction limit inherent to the use of light fields with sub-wavelength objects, while still benefiting from the ultrasensitive readout capacity offered by low noise laser sources. Various kinds of exotic resonators could then be studied, in particular suspended graphene membranes, nanotubes, and micropilars or photonic crystal cavities embedding single emitters. The second part of the project aims at studying the coupling of a nano-resonator to a single emitter (quantum dots / color center in diamond nano-crystals), a system that can be seen as a macroscopic trapped ion, and observes the first quantum signatures of this hybrid quantum system.'

Introduzione (Teaser)

Studying interactions between light and matter can elicit answers to some of the most fundamental open questions in physics. Ground-breaking experiments on the quantum scale have shed light on new forms of coupling certain to shake up the field.

Altri progetti dello stesso programma (FP7-PEOPLE)

REHABCI (2008)

Neurorehabilitation using Brain-Computer Interface

Read More  

VARIETY (2012)

The Researchers Variety Show

Read More  

METDEF (2013)

Metabolic engineering of triterpenoid pathways involved in plant defense in Arabidopsis and rice

Read More