DIRENICC

Direct Enantioselective N-Acyl Iminium Cyclisation Cascades

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Ms.
Nome: Linda
Cognome: Pialek
Email: send email
Telefono: +44 1865 289800
Fax: +44 1865 289801

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 171˙740 €
 EC contributo 171˙740 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2009-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-03-01   -   2011-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Ms.
Nome: Linda
Cognome: Pialek
Email: send email
Telefono: +44 1865 289800
Fax: +44 1865 289801

UK (OXFORD) coordinator 171˙740.80

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

materials    physical    chemistry    starting    ha    wish    synthesis    structures    ion    pi    conjugate    oslash    chiral    cyclisation    br    reactions    organic    readily    fellowship    base    iminium    acyl    asymmetric    nsted       acid    condensation    enantioselectivity   

 Obiettivo del progetto (Objective)

'We wish to develop new asymmetric Brønsted acid catalysed cyclisation reactions through direct condensation that will allow the efficient and highly enantioselective construction of azabicyclic and azaspirocyclic structures from readily available starting materials. This will constitute a new, powerful and broadly applicable organocatalytic asymmetric strategy to such target molecules. The concept of our proposal is to generate and exploit reactive N-acyl iminium ions in cyclisation reactions whereby the chiral environment of an associated chiral conjugate base of a Brønsted acid HA* governs enantioselectivity. The starting materials for the reaction sequence would be readily available ketoesters (or ketoacids) and a primary amine tethered to a suitable pi-nucleophilic trap. Initial condensation of the starting materials would an enamide intermediate. On protonation by HA* in a low polarity solvent, tight ion pairing of the N-acyl iminium ion with the chiral conjugate base of the Brønsted acid should occur. Provided there is sufficient ordering and effective facial differentiation in this ion pair, attack of the pendant pi-nucleophile will give rise to enantioselectivity in the (irreversible) cyclisation step. With at least three points of diversity, numerous multicyclic structures bearing additional functionality and spectator groups can be readily accessed. This will enable the repeated application of the method in target synthesis. During the course of the Fellowship, through physical organic chemistry techniques and molecular modelling calculations we would like to elucidate the mechanistic pathway and origins of stereocontrol. Finally we wish to apply the methodology in the formal synthesis of an alkaloid natural product. Therefore this multidisciplinary Fellowship project will involve the development of innovative asymmetric organic methods, physical organic chemistry, computational chemistry and target oriented synthesis.'

Altri progetti dello stesso programma (FP7-PEOPLE)

A-TEAM (2013)

ADVANCED TOOLS FOR EXPOSURE ASSESSMENT AND BIOMONITORING

Read More  

POREEN (2013)

Partnering Opportunities between Europe and China in the Renewable Energies and Environmental industries

Read More  

NANOCHEMIMAGE (2008)

Nanoscale chemical imaging: Tools and techniques for localised infrared spectroscopy of nanostructured polymers and biomaterials

Read More