Coordinatore | "BIOMEDICAL RESEARCH FOUNDATION, ACADEMY OF ATHENS"
Organization address
address: Soranou Efesiou 4 contact info |
Nazionalità Coordinatore | Greece [EL] |
Totale costo | 100˙000 € |
EC contributo | 100˙000 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2009-RG |
Funding Scheme | MC-IRG |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-07-01 - 2014-06-30 |
# | ||||
---|---|---|---|---|
1 |
"BIOMEDICAL RESEARCH FOUNDATION, ACADEMY OF ATHENS"
Organization address
address: Soranou Efesiou 4 contact info |
EL (ATHENS) | coordinator | 100˙000.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'We propose to study intrinsic cortical network activity in-vitro. It is already known that the cerebral cortex, both in-vivo and in-vitro, produces spontaneous patterns of electrical activity independently of extrinsic inputs. These consist of network-induced prolonged depolarizations & action potentials (UP states), alternating with periods of synaptic withdrawal, membrane hyperpolarization and cessation of firing (DOWN states). It is precisely on such endogenous activity that all external inputs act, namely sensory information and/or neuromodulation. It is also increasingly evident that certain mental disorders are associated, not with specific brain lesions or cellular degeneration, but with abnormal cortical activity. Hence, this endogenous activity is crucial for our understanding of cortical information processing. To present, the generation and development of intrinsic discharge patterns and their interaction with external inputs are poorly understood. Here we propose to use brain slices to study the ontogeny and susceptibility to neuromodulation of spontaneous slow oscillations (UP/DOWN states) and persistent activity (evoked UP states) of different cortical regions. We will first compare the development of spontaneous slow oscillations in distinct cortical areas, from prenatal ages to adulthood. This is a novel and essential first step towards understanding the functional differentiation of the cortex, and identifying the possible onset of abnormal network activity during disease. We will then examine how neuromodulators, that gate distinct information processing brain states, affect spontaneous and evoked UP states in thalamocortical slices from adult animals. These data will help clarify how behaviourally distinct brain states affect intrinsic cortical dynamics. This grant will enable the applicant, a worldwide expert in this in-vitro model, to bring the know-how to Europe and continue his training and research in the European Community.'
The central nervous system works largely on the basis of currents and voltages generated by the flow of ions in or out of neurons. Scientists have shed important light on an intriguing endogenous background electrical activity certain to impact processing of incoming signals.
Functional and evolutionary studies of the glutamatergic synapse; a proteomic and genetic approach
Read MoreStatistical and dynamical analysis of collective behaviour in a three-dimensional motion: Empirical studies and modelling
Read MoreGenetics of Systemic lupus erythematosus in northern and southern European populations
Read More