G2 GEOMETRY

Aspects of G2 Geometry

 Coordinatore SCUOLA NORMALE SUPERIORE DI PISA 

 Organization address address: Piazza dei Cavalieri 7
city: Pisa
postcode: 56126

contact info
Titolo: Dr.
Nome: Daniele
Cognome: Altamore
Email: send email
Telefono: +39 050 509376
Fax: +39 050 509334

 Nazionalità Coordinatore Italy [IT]
 Totale costo 45˙000 €
 EC contributo 45˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-RG
 Funding Scheme MC-ERG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-10-01   -   2013-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    SCUOLA NORMALE SUPERIORE DI PISA

 Organization address address: Piazza dei Cavalieri 7
city: Pisa
postcode: 56126

contact info
Titolo: Dr.
Nome: Daniele
Cognome: Altamore
Email: send email
Telefono: +39 050 509376
Fax: +39 050 509334

IT (Pisa) coordinator 45˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

construct    folds    manifolds    associative    sum    construction    submanifolds    class    connect   

 Obiettivo del progetto (Objective)

'A first objective of this proposal is to construct large numbers of new G2 manifolds by extending Kovalev's ``connect sum' construction to a larger class of 3-folds. This will be achieved via a combination of differential, algebraic and analytic methods which will lead to a very good understanding of the topology of these manifolds, of the relationship to the geometry of the generating 3-folds, and of the limits of the ``connect sum' construction.

A second objective is to construct new examples of associative submanifolds, partly using the above results, and to study moduli spaces of associative submanifolds with respect to various notions of ``tame' G2 structures.

A third objective is to construct holomorphic 3-folds with trivial canonical class starting from integral affine manifolds.'

Altri progetti dello stesso programma (FP7-PEOPLE)

BIOGEAST (2011)

Biodiversity of East-European and Siberian large mammals on the level of genetic variation of populations

Read More  

NANOTRAN (2008)

Theoretical study of electronic transport in carbon nanostructures and molecular wires

Read More  

CNMRPS (2010)

Computation of Nuclear Magnetic Relaxation in Paramagnetic Systems

Read More