Coordinatore | FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V
Organization address
address: Hansastrasse 27C contact info |
Nazionalità Coordinatore | Germany [DE] |
Totale costo | 5˙928˙666 € |
EC contributo | 4˙231˙823 € |
Programma | FP7-TRANSPORT
Specific Programme "Cooperation": Transport (including Aeronautics) |
Code Call | FP7-AAT-2010-RTD-1 |
Funding Scheme | CP-FP |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-11-01 - 2014-04-30 |
# | ||||
---|---|---|---|---|
1 |
FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V
Organization address
address: Hansastrasse 27C contact info |
DE (MUENCHEN) | coordinator | 1˙053˙557.10 |
2 |
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Organization address
address: BATIMENT CE 3316 STATION 1 contact info |
CH (LAUSANNE) | participant | 490˙810.00 |
3 |
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
Organization address
address: Rue Michel -Ange 3 contact info |
FR (PARIS) | participant | 359˙446.10 |
4 |
AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE,L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE
Organization address
address: Lungotevere Grande Ammiraglio Thaon di Revel 76 contact info |
IT (ROMA) | participant | 346˙219.25 |
5 |
UNIVERSITY OF PATRAS
Organization address
address: UNIVERSITY CAMPUS RIO PATRAS contact info |
EL (RIO PATRAS) | participant | 294˙420.00 |
6 |
Research Center for Non Destructive Testing GmbH
Organization address
address: ALTENBERGER STRASSE 69 contact info |
AT (Linz) | participant | 289˙751.75 |
7 |
UNIVERSITY OF BRISTOL
Organization address
address: TYNDALL AVENUE SENATE HOUSE contact info |
UK (BRISTOL) | participant | 255˙153.20 |
8 |
INSTYTUT MASZYN PRZEPLYWOWYCH IM ROBERTA SZEWALSKIEGO POLSKIEJ AKADEMII NAUK - IMP PAN
Organization address
address: UL. FISZERA 14 contact info |
PL (GDANSK) | participant | 244˙256.40 |
9 |
AGILENT TECHNOLOGIES UK LIMITED
Organization address
address: WHARFEDALE ROAD IQ WINNERSH 610 contact info |
UK (WOKINGHAM) | participant | 221˙642.50 |
10 |
AIRBUS DEFENCE AND SPACE GMBH
Organization address
address: WILLY MESSERSCHMITT STRASSE 1 contact info |
DE (OTTOBRUNN) | participant | 197˙366.40 |
11 |
"A. Usikov Institute of Radiophysics and Electronics, National Academy of Sciences of Ukraine (Kharkov)"
Organization address
address: "IRE, Proskura St. 12" contact info |
UA (Kharkov) | participant | 195˙498.30 |
12 |
AIRBUS OPERATIONS GMBH
Organization address
address: Kreetslag 10 contact info |
DE (HAMBURG) | participant | 185˙100.00 |
13 |
AIRBUS GROUP SAS
Organization address
address: Boulevard de Montmorency 37 contact info |
FR (PARIS) | participant | 58˙602.00 |
14 |
EASN Technology Innovation Services BVBA
Organization address
address: TERWEIDENSTRAAT 28 contact info |
BE (BUDINGEN) | participant | 40˙000.00 |
15 |
A2 TECHNOLOGIES LTD
Organization address
address: CAIRNEYHILL ROAD VIEWFIELD HOUSE contact info |
UK (PERTH) | participant | 0.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Even though composite materials are already used in the manufacturing of structural components in aeronautics industry a consequent light-weight design of CFRP primary structures is limited due to a lack of adequate joining technologies. In general, adhesive bonding is the optimum technique for joining CFRP light-weight structures, but difficulties in assessing the bond quality by non-destructive testing (NDT) limit its use for aircraft structural assembly. In consequence certification by the regulation authorities is restrictive. In order to implement robust and reliable quality assurance procedures for adhesive bonding, the main objective of ENCOMB (Extended Non-Destructive Testing for Composite Bonds) is the identification, development and adaptation of methods suitable for the assessment of the adhesive bond quality. Since the performance of adhesive bonds depends on the physico-chemical properties of adherend surfaces and adhesives, testing methods for adhesive and adherend surface characterisation will also be developed. The implementation of reliable adhesive bonding processes by advanced quality assurance will lead to an increased use of light-weight composite materials for highly integrated structures minimising rivet based assembly. The expected weight savings for the fuselage airframe are up to 15 %. These weight savings will have further effects on the size and weight of the engines. From the overall weight savings, significant reductions in fuel consumption (direct costs) and hence CO2 emissions per passenger-kilometre will result. In ENCOMB, a multidisciplinary consortium of 14 partners from top-level European research organisations, universities and industries brings together leading experts from all relevant fields. The participation of three major European aircraft manufacturers as well as one SME ensures the consideration of relevant application scenarios, technological specifications and use of the full exploitation potential of the results.'
In a continuous quest to reduce fuel consumption and corresponding carbon dioxide (CO2) emissions, lightweight carbon fibre-reinforced polymers (CFRPs) are replacing metal in aircraft components. The crucial issue is to assess the performance of adhesive bonds in load-critical and large composite structures.
The EU-funded project http://www.encomb.eu/ (ENCOMB) (Extended non-destructive testing of composite bonds) was launched to address the lack of standardised quality assurance procedures. In particular, non-destructive testing (NDT) technology capable of reliably assessing both composite structures' surfaces and adhesive bonds leads to difficulties in certification.
The strength of an adhesive bond depends among other things on the physicochemical properties of the adhered surfaces, adhesive and the joint. The physicochemical properties are affected by a variety of factors, e.g. the degree of contamination, curing parameters, ageing or the activation after surface pre-treatment.
Therefore, one of the ENCOMB project objectives was the adaptation of methods for characterisation of adhered surfaces before application of the adhesive. The second challenging goal was the development of techniques for evaluating the bonded components. Scientists defined this newly developed quality assurance technology as extended NDT (ENDT).
Firstly, the most representative aeronautic application scenarios were identified. Suitable specimens were developed and characterised using ENDT methods. The results were compared with those of a variety of conventional analytical methods and mechanical testing to evaluate their suitability for the specific measurement tasks.
Among others, researchers applied optical methods like laser scanning vibrometry, active thermography and a wetting test to characterise the state of adhered surfaces. Sensor-based techniques such as embedded optical fibre sensors or electrochemical impedance spectroscopy were also tested as well as laser-excited and non-linear ultrasonic techniques.
In total, 31 ENDT technologies were tested for the assessment of adhered surfaces and the evaluation of adhesive bonds. In particular, for each of the aeronautic application scenarios, several techniques were applied to detect different contamination levels and passed the validation process. Knowledge gained regarding the effects of bond degradation will guide necessary design improvements.
The implementation of reliable assessment technology will lead to an increased use of CFRP components for highly integrated structures. The expected weight savings for the fuselage airframe will be up to 15 %. That will have further effects on the engine size and weight. Overall weight savings will result in significant reductions in fuel consumption and CO2 emissions per passenger-kilometre.