Coordinatore | THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 1˙301˙196 € |
EC contributo | 1˙301˙196 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2010-StG_20091028 |
Funding Scheme | ERC-SG |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-12-01 - 2016-06-30 |
# | ||||
---|---|---|---|---|
1 |
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Organization address
address: The Old Schools, Trinity Lane contact info |
UK (CAMBRIDGE) | hostInstitution | 1˙301˙196.00 |
2 |
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Organization address
address: The Old Schools, Trinity Lane contact info |
UK (CAMBRIDGE) | hostInstitution | 1˙301˙196.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'In the last ten years there has been a surge of interest in non-modal analysis applied to canonical problems in fundamental fluid mechanics. Even in simple flows, the stability behaviour predicted by non-modal analysis can be completely different from and far more accurate than that predicted by conventional eigenvalue analysis.
As well as being more accurate, the tools of non-modal analysis, such as Lagrangian optimization, are very versatile. Furthermore, the outputs, such as receptivity and sensitivity maps of a flow, provide powerful insight for engineers. They describe where a flow is most receptive to forcing or where the flow is most sensitive to modification.
The application of non-modal analysis to canonical problems has set the scene for step changes in engineering practice in fluid mechanics and thermoacoustics. The technical objectives of this proposal are to apply non-modal analysis to high Reynolds number flows, reacting flows and thermoacoustic systems, to compare theoretical predictions with experimental measurements and to embed these techniques within an industrial design tool that has already been developed by the group.
This research group s vision is that future generations of engineering CFD tools will contain modules that can perform non-modal analysis. The generalized approach proposed here, combined with challenging scientific and engineering examples that are backed up by experimental evidence, will make this possible and demonstrate it to a wider engineering community.'