Coordinatore | ASTON UNIVERSITY
Organization address
address: ASTON TRIANGLE contact info |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 278˙807 € |
EC contributo | 278˙807 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2011-IIF |
Funding Scheme | MC-IIF |
Anno di inizio | 2014 |
Periodo (anno-mese-giorno) | 2014-03-11 - 2016-03-10 |
# | ||||
---|---|---|---|---|
1 |
ASTON UNIVERSITY
Organization address
address: ASTON TRIANGLE contact info |
UK (BIRMINGHAM) | coordinator | 278˙807.40 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'This project, entitled ‘Metal-Piezoelectric-Insulator-Semiconductor Field-Effect-Transistor’ (MPIS-FET), will fabricate a metal-piezoelectric-insulator-semiconductor field-effect-transistor device for pressure sensing, in order to perform high-sensitivity strain detection (gauge factor>100) under harsh conditions (high temperature>500oC). High-temperature pressure sensors are of extreme importance for automotive, aerospace, aircraft, power generation industry, and scientific instruments. The current pressure sensors suffer from various drawbacks such as poor thermal stability, low sensitivity, poor chemical inertness, high complexity in readout circuit, and high cost.
This project will bring a very talented researcher (Dr Meiyong Liao) from one of the world leading research institutes (National Institute for Materials Science, NIMS, Japan), specializing in the diamond doping, etching and sensor fabrications, to work with a leading Nanoscience Research Group (NRG) at Aston University (UK), specializing in diamond sensors and power devices, with a combined expertise to address the specific challenge described above. The project will transfer the skills and knowledge from one of the world leading Japanese institutions to the Europe through the Marie Curie International Incoming Fellowship Scheme. The proposed novel pressure sensor will contribute to the aerospace, automotive, and industrial society of Europe.'