WIQOJO

Wideband Quantum Optics with Josephson Junctions

 Coordinatore COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 1˙640˙587 €
 EC contributo 1˙640˙587 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-StG_20101014
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-01-01   -   2016-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

 Organization address address: RUE LEBLANC 25
city: PARIS 15
postcode: 75015

contact info
Titolo: Dr.
Nome: Max
Cognome: Hofheinz
Email: send email
Telefono: 438786731

FR (PARIS 15) hostInstitution 1˙640˙587.00
2    COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

 Organization address address: RUE LEBLANC 25
city: PARIS 15
postcode: 75015

contact info
Titolo: Mr.
Nome: Jérôme
Cognome: Planes
Email: send email
Telefono: +33 4 38 78 60 39
Fax: +33 4 38 78 51 53

FR (PARIS 15) hostInstitution 1˙640˙587.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

wideband    coulomb    engineering    blockade    optics    circuit    regime    dynamical    photons    photon    frequency    circuits    ghz    want    constraints    quantum    thz    single   

 Obiettivo del progetto (Objective)

'Circuit quantum optics (quantum optics with microwave photons in electronic circuits) has allowed to solve several hard problems in traditional quantum optics and to explore new physics. However, so far only one of two regimes of circuit quantum optics has been explored, the circuit quantum electrodynamics regime, where photons reside in electrical resonators.

In this project we want to develop the other regime of circuit quantum optics, the wideband regime, where photons are wave packets propagating along transmission lines. To do so we will build devices based on dynamical Coulomb blockade in Josephson junctions, a phenomenon relating tunneling of Cooper pairs to the emission and absorption of photons. This effect is well understood, but only DC current has been studied so far. We want to employ the photonic aspect of dynamical Coulomb blockade: Engineering the impedance seen by the junction and applying appropriate voltages allows to select specific single- or multi-photon processes that we want to use to build single photon sources, detectors and amplifiers and many other devices. Together they will fully enable wideband circuit quantum optics.

The successful project will also extend the frequency range accessible to circuit quantum optics: Current quantum circuits can be operated only in a limited range around 5 GHz due to engineering constraints. Our approach lifts these constraints and the proposed devices should function in the range from a few GHz up to 1 THz. This extended frequency window will enable the development of hybrid quantum systems coupling quantum circuits to single dopants, molecules, quantum dots or other mesoscopic devices. The output of our project will also be helpful for other domains where radiation in the GHz to THz has to be measured at the single photon level, for example astronomy.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

SYNAPSEFUNCTION (2011)

Molecular studies of synaptic vesicle recycling in health and disease

Read More  

VIBES (2014)

‘Viking’ Biocontrol Solution

Read More  

FLOWGENE (2012)

Following the Genomic Footprints of Early Europeans

Read More